1 |
ZHANG Xiang, HUANG Shuzhe, GUAN Yuhang. Research progress, challenges, and prospects in drought propagation[J]. Advances in Earth Science, 2023, 38(6): 563-579.
|
|
张翔, 黄舒哲, 管宇航. 干旱传播的研究进展、挑战与展望[J]. 地球科学进展, 2023, 38(6): 563-579.
|
2 |
ZHANG Qiang, ZHANG Liang, CUI Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J]. Advances in Earth Science, 2011, 26(7): 763-778.
|
|
张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
|
3 |
CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.
|
|
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
|
4 |
AGHAKOUCHAK A, FARAHMAND A, MELTON F S, et al. Remote sensing of drought: progress, challenges and opportunities[J]. Reviews of Geophysics, 2015, 53(2): 452-480.
|
5 |
van LOON A F. Hydrological drought explained[J]. Wiley Interdisciplinary Reviews Water, 2015, 2(4): 359-392.
|
6 |
SHUKLA S, WOOD A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35(2). DOI:10.1029/2007GL032487 .
|
7 |
YIRDAW S Z, SNELGROVE K R, AGBOMA C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356(1/2): 84-92.
|
8 |
NARASIMHAN B, SRINIVASAN R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring[J]. Agricultural and Forest Meteorology, 2005, 133(1/2/3/4): 69-88.
|
9 |
THOMAS A C, REAGER J T, FAMIGLIETTI J S, et al. A GRACE-based water storage deficit approach for hydrological drought characterization[J]. Geophysical Research Letters, 2014, 41(5): 1 537-1 545.
|
10 |
SINHA D, SYED T H, FAMIGLIETTI J S, et al. Characterizing drought in India using GRACE observations of terrestrial water storage deficit[J]. Journal of Hydrometeorology, 2017, 18(2): 381-396.
|
11 |
WANG X W, de LINAGE C, FAMIGLIETTI J, et al. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements[J]. Water Resources Research, 2011, 47(12). DOI:10.1029/2011WR010534 .
|
12 |
HUANG Z Y, JIAO J J, LUO X, et al. Drought and flood characterization and connection to climate variability in the Pearl River basin in southern China using long-term GRACE and reanalysis data[J]. Journal of Climate, 2021, 34(6): 2 053-2 078.
|
13 |
WU J F, YUAN X, YAO H X, et al. Reservoirs regulate the relationship between hydrological drought recovery water and drought characteristics[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127127 .
|
14 |
WU J F, CHEN X W, YAO H X, et al. Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir[J]. Journal of Hydrology, 2017, 551: 495-507.
|
15 |
WU J F, LIU Z Y, YAO H X, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology, 2018, 563: 726-736.
|
16 |
LONG D, SHEN Y J, SUN A, et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data[J]. Remote Sensing of Environment, 2014, 155: 145-160.
|
17 |
CHEN X H, JIANG J B, LI H. Drought and flood monitoring of the Liao river basin in northeast China using extended GRACE data[J]. Remote Sensing, 2018, 10(8). DOI:10.3390/rs10081168 .
|
18 |
XIE J K, XU Y P, GAO C, et al. Total basin discharge from GRACE and water balance method for the Yarlung Tsangpo River Basin, southwestern China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7 617-7 632.
|
19 |
JING W L, ZHANG P Y, ZHAO X D, et al. Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure[J]. Journal of Hydrology, 2020, 590. DOI:10.1016/j.jhydrol.2020.125239 .
|
20 |
LI F P, KUSCHE J, RIETBROEK R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE‐like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56(5). DOI:10.1029/2019WR026551 .
|
21 |
LI F P, KUSCHE J, CHAO N F, et al. Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data[J]. Geophysical Research Letters, 2021, 48(8). DOI:10.1029/2021GL093492 .
|
22 |
KUMAR D, BHATTACHARJYA R K. GRNN Model for prediction of groundwater fluctuation in the state of Uttarakhand of India using GRACE data under limited bore well data[J]. Journal of Hydroinformatics, 2021, 23(3): 567-588.
|
23 |
WEI L Y, JIANG S H, REN L L, et al. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data[J]. Journal of Hydrology, 2021, 598. DOI:10.1016/j.jhydrol.2021.126274 .
|
24 |
WANG F, CHEN Y N, LI Z, et al. Developing a Long Short-Term Memory (LSTM)-based model for reconstructing terrestrial water storage variations from 1982 to 2016 in the Tarim River Basin, northwest China[J]. Remote Sensing, 2021, 13(5). DOI:10.3390/rs13050889 .
|
25 |
YANG Ling, DENG Min, WANG Jinlong, et al. Spatial-temporal evolution of land use and ecological risk in Dongting Lake Basin during 1980-2018[J]. Acta Ecologica Sinica, 2021, 41(10): 3 929-3 939.
|
|
杨伶, 邓敏, 王金龙, 等. 近40年来洞庭湖流域土地利用及生态风险时空演变分析[J]. 生态学报, 2021, 41(10): 3 929-3 939.
|
26 |
XIAO Peng. Attribution of hydrological trend in Dongting Lake Basin[D]. Beijing: Tsinghua University, 2014.
|
|
肖鹏. 洞庭湖流域水资源演变归因分析[D]. 北京: 清华大学, 2014.
|
27 |
SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7 547-7 569.
|
28 |
WATKINS M M, WIESE D N, YUAN D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2 648-2 671.
|
29 |
LUTHCKE S B, SABAKA T J, LOOMIS B D, et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution[J]. Journal of Glaciology, 2013, 59(216): 613-631.
|
30 |
CHEN C, HE M N, CHEN Q W, et al. Triple collocation-based error estimation and data fusion of global gridded precipitation products over the Yangtze River basin[J]. Journal of Hydrology, 2022, 605. DOI:10.1016/j.jhydrol.2021.127307 .
|
31 |
CHEN F, CROW W T, BINDLISH R, et al. Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation[J]. Remote Sensing of Environment, 2018, 214: 1-13.
|
32 |
RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.
|
33 |
LI B L, RODELL M, KUMAR S, et al. Global GRACE data assimilation for groundwater and drought monitoring: advances and challenges[J]. Water Resources Research, 2019, 55(9): 7 564-7 586.
|
34 |
KOSTER R D, SUAREZ M J, DUCHARNE A, et al. A catchment-based approach to modeling land surface processes in a general circulation model: 1. model structure[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D20): 24 809-24 822.
|
35 |
EK M B, MITCHELL K E, LIN Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22). DOI:10.1029/2002JD003296 .
|
36 |
KOSTER R D, SUAREZ M J. Energy and water balance calculations in the Mosaic LSM[M]. Greenbelt, Maryland: National Aeronautics and Space Administration, Goddard Space Flight Center, Laboratory for Atmospheres, Data Assimilation Office: Laboratory for Hydrospheric Processes, 1996.
|
37 |
MÜLLER S H, CÁCERES D, EISNER S, et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation[J]. Geoscientific Model Development, 2021, 14(2): 1 037-1 079.
|
38 |
GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 2017, 30(14): 5 419-5 454.
|
39 |
LIAO Mengsi. Change of water reserves in recent ten years from GRACE and GLDAS in Dongting Lake Basin[D]. Changsha: Hunan Normal University, 2015.
|
|
廖梦思. 基于GRACE和GLDAS数据反演近十年洞庭湖流域水储量变化[D]. 长沙: 湖南师范大学, 2015.
|
40 |
CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: a seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
|
41 |
HUMPHREY V, GUDMUNDSSON L, SENEVIRATNE S I. Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes[J]. Surveys in Geophysics, 2016, 37: 357-395.
|
42 |
LU S B, LI W Q, YAO G B, et al. The changes prediction on terrestrial water storage in typical regions of China based on neural networks and satellite gravity data[J]. Scientific Reports, 2024, 14(1). DOI:10.1038/s41598-024-67611-8 .
|
43 |
KRATZERT F, KLOTZ D, BRENNER C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22: 6 005-6 022.
|
44 |
SUN Z L, ZHU X F, PAN Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of the Total Environment, 2018, 634: 727-738.
|
45 |
MÜLLER S H, TRAUTMANN T, ACKERMANN S, et al. The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features[J]. Geoscientific Model Development Discussions, 2023, 2023: 1-46.
|
46 |
GUAN Xuewen, ZENG Ming. Characteristics and enlightenment of low water in Changjiang River Basin in 2022[J]. Yangtze River, 2022, 53(12): 1-5, 36.
|
|
官学文, 曾明. 2022年长江流域枯水特征分析与启示[J]. 人民长江, 2022, 53(12): 1-5, 36.
|
47 |
GE Guohua, XIONG Yuanji, LI Zhenxing. Analysis and enlightenment of drought characteristics in Dongting Lake area in 2022[J]. Hunan Hydro & Power, 2023(2): 54-59.
|
|
葛国华, 熊元基, 黎振兴. 2022年洞庭湖区干旱特征分析与启示[J]. 湖南水利水电, 2023(2): 54-59.
|
48 |
KUANG Yanwu, MA Zhonghong. Analysis and thinking on 2022 hydrological drought of Dongting Lake[J]. Hunan Hydro & Power, 2024(2): 62-64.
|
|
匡燕鹉, 马忠红. 2022年洞庭湖水文大干旱分析与思考[J]. 湖南水利水电, 2024(2): 62-64.
|
49 |
Juan LÜ, QU Yanping, SU Zhicheng, et al. Drought situation in the Yangtze River Basin in 2022 and reflections [J]. Disaster Reduction in China, 2022, 32(21): 50-52.
|
|
吕娟, 屈艳萍, 苏志诚, 等. 2022年长江流域干旱情势及思考[J]. 中国减灾, 2022, 32(21): 50-52.
|