地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 881 -889. doi: 10.11867/j.issn.1001-8166.2023.055

综述与评述    下一篇

华北降水日循环与陆气耦合和气溶胶联系的研究进展
魏江峰 1 , 2( ), 宋媛媛 1 , 2, 逯博延 3   
  1. 1.南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    2.南京信息工程大学 大气科学学院,江苏 南京 210044
    3.浙江省台州市椒江区气象局,浙江 台州 317700
  • 收稿日期:2023-05-16 修回日期:2023-06-15 出版日期:2023-09-10
  • 基金资助:
    国家自然科学基金项目(41975084)

Research advances in the Diurnal Cycle of Precipitation in North China and its Relationship with Land-Atmosphere Coupling and Aerosols

Jiangfeng WEI 1 , 2( ), Yuanyuan SONG 1 , 2, Boyan LU 3   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3.Jiaojiang District Meteorological Bureau, Taizhou Zhejiang 317700, China
  • Received:2023-05-16 Revised:2023-06-15 Online:2023-09-10 Published:2023-09-25
  • About author:WEI Jiangfeng, Professor, research areas include land-atmosphere interactions, water cycle, and climate effects of aerosols. E-mail: jwei@nuist.edu.cn
    SONG Yuanyuan
    LU Boyan. Research advances in the diurnal cycle of precipitation in north China and its relationship with land-atmosphere coupling and aerosols
  • Supported by:
    the National Natural Science Foundation of China(41975084)

降水日循环是气候系统中多种动力和热力过程共同作用的结果,与水循环和陆气相互作用密切相关。在华北地区,降水日循环受到山谷风环流、边界层惯性振荡和海陆风环流等影响,主要表现为凌晨和下午两个峰值。同时,人为排放导致的较高的气溶胶浓度也对降水日循环有一定影响。介绍了华北降水日循环的基本特征和影响因素,并总结了近期在华北降水日循环与陆气耦合的联系、华北降水日循环的模式模拟及气溶胶的影响等方面的研究,归纳了已有的科学认知,总结了现有研究的不足和面临的挑战。总之,深入研究降水日循环及其影响因素,可以帮助我们更好地理解降水的形成机制和演变规律,为提高降水精细化预报能力提供科学支撑。

The Diurnal Cycle of Precipitation (DCP) is the result of various dynamic and thermodynamic processes in the climate system and is closely related to the water cycle and land-atmosphere interactions. In North China, the DCP is influenced by factors such as valley wind circulation, boundary layer inertial oscillations, and sea-land breeze circulation, exhibiting two peaks during the early morning and afternoon. In addition, the DCP in North China is influenced by anthropogenic aerosol emissions. This study introduces the fundamental characteristics and factors influencing the DCP in North China and summarizes recent research on the connection between the DCP and land-atmosphere coupling in North China, the modeling of the DCP, and the influence of aerosols on the DCP. The existing scientific knowledge is synthesized, and its shortcomings and challenges are outlined. Overall, investigating the DCP and its influencing factors can help us better understand the mechanisms of precipitation formation and evolution. This provides scientific support for enhancing the accuracy of fine-scale precipitation forecasting.

中图分类号: 

图1 不同类型降水事件区域平均的降水(灰色曲线)、蒸散发(E)、垂直积分的水汽辐合和总柱水变化趋势的日循环特征(据参考文献[ 47 ]修改)
Fig. 1 Diurnal cycle of mean area-averaged precipitationgrey curvesand evapotranspirationE), vertically integrated Moisture Flux Convergence and tendency of atmospheric precipitable water for different types of precipitation eventsmodified after reference 47 ])
图2 ERA5MERRA-2中华北地区陆气耦合强度和气象变量的概率密度分布(据参考文献[ 47 ]修改)
(a)和(b) ERA5和MERRA-2在12:00-14:00时段平均的蒸散比(EF)和总柱水(PW)双变量概率密度分布(阴影),15:00-17:00时的降水量作为PW和EF的函数叠加(每个点代表1个下午降水量);(c)(d)与(a)(b)相同,但为EF和抬升凝结高度(LCL)的双变量概率密度分布;(e)和(f)15:00-17:00时500 hPa垂直速度( ω500)和950 hPa风场散度( DIV950)的概率密度分布;(g)和(h)12:00-14:00时垂直积分的水汽辐合(MFC)和蒸散发(E)的概率密度分布
Fig. 2 Land-atmosphere coupling strength and the probability density distribution of meteorological variables in North China for ERA5 and MERRA-2modified after reference 47 ])
(a) and (b) bivariate Probability Distribution Function (PDF)of Evaporative Fraction (EF) and Precipitable Water (PW) in 12:00-14:00 LST for ERA5 and MERRA-2 (shading). Afternoon precipitation in 15:00-17:00 LST are overlayed as a function of PW and EF (each point represents the precipitation rate of one afternoon). (c) and (d) same as (a) and (b) but for the bivariate PDF of EF and Lifting Condensation Level(LCL). (e) and (f) PDFs of 500 hPa ωω500) and 950 hPa wind divergence ( DIV950) in 15:00-17:00 LST. (g) and (h) PDFs of MFC and E in 12:00-14:00 LST for ERA5 and MERRA-2
图3 降水效率、地表蒸散发和外部水汽对下午、凌晨降水事件与非降水事件差异的贡献
Fig. 3 Efficiency effectsurface effectand remote effect that contribute to the average precipitation differences between rainy-afternoon daysrainy-early morning days and non-precipitation days
图4 参数化的对流方案(PC)和显式对流方案(EC)试验模拟的降水日循环及与观测和再分析数据的对比(据参考文献[ 60 ]修改)
(a)和(b)分别是PC和EC试验模拟的2014年夏季平均降水日循环特征及与观测的比较。PC试验[(c)~(e)]和EC试验[(f)~(h)]、CMA[(i)~(k)]和GSMaP[(l)~(n)]观测数据及ERA5数据[(o)~(q)]在12:00-19:00 LST期间的平均降水峰值时刻差异(左边列),以及不同气溶胶浓度/排放下它们的差异(右边两列);图右下角数字为空间数值的区域平均值;CTL、Exp2和Exp4试验分别为无人为排放、实际人为排放和5倍实际排放下的集合试验结果
Fig. 4 Diurnal cycle of summer precipitation simulated by the PC and EC experimentsmodified after reference 60 ])
(a) and (b) are summer 2014 mean diurnal cycle of precipitation from PC and EC experiments,respectively, and their comparison with observations. The bottom rows are precipitation peak time in 12:00-19:00 LST (first column) and their differences between different aerosol concentrations/emissions (right two columns) in PC [(c)~(e)] and EC [(f)~(h)] experiments, CMA [(i)~(k)] and GSMaP [(l)~(n)] observations, and ERA5[(o)~(q)]. The area mean value is shown in the right corner of each panel. CTL, Exp2, and Exp4 are WRF-Chem experiments with no anthropogenic emissions, standard anthropogenic emissions, and five times of standard anthropogenic emissions, respectively
1 DAI A G, TRENBERTH K E, KARL T R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range[J]. Journal of Climate, 1999, 12(8): 2 451-2 473.
2 MOONEY P A, MULLIGAN F J, BRODERICK C. Diurnal cycle of precipitation over the British Isles in a 0.44° WRF multiphysics regional climate ensemble over the period 1990-1995[J]. Climate Dynamics, 2016, 47(9): 3 281-3 300.
3 DAI A G. Global precipitation and thunderstorm frequencies. part II: diurnal variations[J]. Journal of Climate, 2001, 14(6): 1 112-1 128.
4 YANG G Y, SLINGO J. The diurnal cycle in the tropics[J]. Monthly Weather Review, 2001, 129(4): 784-801.
5 SOROOSHIAN S, GAO X, HSU K, et al. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J]. Journal of Climate, 2002, 15(9): 983-1 001.
6 YU R C, LI J, CHEN H M, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Journal of Meteorological Research, 2014, 28(5): 877-902.
7 DIRMEYER P A, PETERS-LIDARD C, BALSAMO G. Land-atmosphere interactions and the water cycle[M]// BRUNET G, JONES S, RUTI P M. Seamless prediction of the Earth system: from minutes to months. Geneva, Switzerland: WMO-1156, World Meteorological Organization, 2015: 145-154.
8 SHIN D W, COCKE S, LAROW T E. Diurnal cycle of precipitation in a climate model[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D13). DOI:10.1029/2006JD008333 .
9 YIN S Q, GAO G, LI W J, et al. Long-term precipitation change by hourly data in Haihe River Basin during 1961-2004[J]. Science China Earth Sciences, 2011, 54(10): 1 576-1 585.
10 CARBONE R E, TUTTLE J D, AHIJEVYCH D A, et al. Inferences of predictability associated with warm season precipitation episodes[J]. Journal of the Atmospheric Sciences, 2002, 59(13): 2 033-2 056.
52 DAI A G, GIORGI F, TRENBERTH K E. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D6): 6 377-6 402.
53 DAI A G, TRENBERTH K E. The diurnal cycle and its depiction in the community climate system model[J]. Journal of Climate, 2004, 17(5): 930-951.
54 PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361.
55 GUO J P, DENG M J, LEE S S, et al. Delaying precipitation and lightning by air pollution over the Pearl River Delta. part I: observational analyses[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(11): 6 472-6 488.
56 LEE S S, GUO J P, LI Z Q. Delaying precipitation by air pollution over the Pearl River Delta: 2. model simulations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11 739-11 760.
57 SUN Y, ZHAO C. Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China[J]. Atmospheric Chemistry Physics, 2021, 21(21): 16 555-16 574.
58 ZHOU S Y, YANG J, WANG W, et al. An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing-Tianjin-Hebei[J]. Atmospheric Chemistry and Physics, 2020, 20: 5 211-5 229.
59 WEI J F, JIN Q J, YANG Z L, et al. Land-atmosphere-aerosol coupling in North China during 2000-2013[J]. International Journal of Climatology, 2017, 37: 1 297-1 306.
60 WEI J F, LU B Y, SONG Y Y, et al. Impact of aerosol radiative effect on the diurnal cycle of summer precipitation over North China: distinct results from simulations with parameterized versus explicit convection[J]. Geophysical Research Letters, 2022, 49(9). DOI: 10.1029/2022GL098795 .
11 DIRMEYER P A, CASH B A, KINTER III J L, et al. Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization[J]. Climate Dynamics, 2012, 39(1): 399-418.
12 HUANG W R, CHAN J C L, AU-YEUNG A Y M. Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China[J]. Climate Dynamics, 2013, 40(7): 1 625-1 642.
13 KIM H, LEE M I, CHA D H, et al. Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10km horizontal resolution[J]. Climate Dynamics, 2019, 53(11): 6 523-6 542.
14 HAO Lisheng, XIANG Liang, ZHOU Xuwen. The quasi-biweekly oscillation of daily precipitation and low-frequency circulation characteristics over North China Plain in summer[J]. Plateau Meteorology, 2015, 34(2): 486-493.
郝立生, 向亮, 周须文. 华北平原夏季降水准双周振荡与低频环流演变特征[J]. 高原气象, 2015, 34(2): 486-493.
15 ZHOU T J, YU R C, CHEN H M, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations[J]. Journal of Climate, 2008, 21(16): 3 997-4 010.
16 KOSTER R D, DIRMEYER P A, GUO Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305(5 687): 1 138-1 140.
17 LI C C, MAO J T, LAU K H A, et al. Characteristics of distribution and seasonal variation of aerosol optical depth in Eastern China with MODIS products[J]. Chinese Science Bulletin, 2003, 48(22): 2 488-2 495.
18 SHEEHAN P, CHENG E J, ENGLISH A, et al. China’s response to the air pollution shock[J]. Nature Climate Change, 2014, 4(5): 306-309.
19 ZHANG Xiaoye. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteorologica Sinica, 2014, 72(6): 1 108-1 117.
张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J]. 气象学报, 2014, 72(6): 1 108-1 117.
20 LOHMANN U, FEICHTER J. Global indirect aerosol effects: a review[J]. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737.
21 TAO W K, CHEN J P, LI Z Q, et al. Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 2012, 50(2). DOI: 10.1029/2011RG000369 .
22 GAO Xuejie, LIN Yihua, ZHAO Zongci. Modelling the effects of anthropogenic sulfate in climate change by using a regional climate model[J]. Journal of Tropical Meteorology, 2003, 19(2): 169-176.
高学杰, 林一骅, 赵宗慈. 用区域气候模式模拟人为硫酸盐气溶胶在气候变化中的作用[J]. 热带气象学报, 2003, 19(2): 169-176.
23 LIU Hongnian, ZHANG Li. The climate effects of anthropogenic aerosols of different emission scenarios in China[J]. Chinese Jouranl of Geophys, 2012, 55(6): 1 867-1 875.
刘红年, 张力. 中国不同排放情景下人为气溶胶的气候效应[J]. 地球物理学报, 2012, 55(6): 1 867-1 875.
24 LUO Kai, SHENG Lifang. Temporal and spatial variation of aerosol optical depth over East Asia and its probable impact on climate[J]. Periodical of Ocean University of China, 2012, 42(11): 8-18.
罗凯, 盛立芳. 东亚气溶胶光学厚度时空变化特征及其对气候可能的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(11): 8-18.
25 SHI Guangyu, WANG Biao, ZHANG Hua, et al. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840.
石广玉, 王标, 张华, 等. 大气气溶胶的辐射与气候效应[J]. 大气科学, 2008, 32(4): 826-840.
26 ZHANG Qingyun. The variations of the precipitation and water resources in North China since 1880[J]. Plateau Meteorology, 1999, 18(4): 486-495.
张庆云. 1880年以来华北降水及水资源的变化[J]. 高原气象, 1999, 18(4): 486-495.
27 HE H Z, ZHANG F Q. Diurnal variations of warm-season precipitation over Northern China[J]. Monthly Weather Review, 2010, 138(4): 1 017-1 025.
28 YUAN W H, SUN W, CHEN H M, et al. Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11 223-11 234.
29 BLACKADAR A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 1957, 38(5): 283-290.
30 XUE M, LUO X, ZHU K F, et al. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 5 090-5 115.
31 DU Y Y, ZHANG Q H, CHEN Y L, et al. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer[J]. Journal of Climate, 2014, 27: 5 747-5 767.
32 LIU H B, HE M Y, WANG B, et al. Advances in low-level jet research and future prospects[J]. Journal of Meteorological Research, 2014, 28(1): 57-75.
33 SUN W, LI J, YU R C, et al. Circulation structures leading to propagating and non-propagating heavy summer rainfall in central North China[J]. Climate Dynamics, 2018, 51(9): 3 447-3 465.
34 YU R C, LI J, CHEN H M. Diurnal variation of surface wind over central Eastern China[J]. Climate Dynamics, 2009, 33(7): 1 089-1 097.
35 CHENG C L, LI Q C, DOU Y J, et al. Diurnal variation and distribution of short-duration heavy rainfall in Beijing-Tianjin-Hebei region in summer based on high-density automatic weather station data[J]. Atmosphere, 2021, 12(10). DOI: /10.3390/atmos12101263 .
36 SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
37 SHUKLA J, MINTZ Y. Influence of land-surface evapotranspiration on the Earth’s climate[J]. Science, 1982, 215(4 539): 1 498-1 501.
38 XU Zhongfeng, ZHANG Weiyue, GUO Weidong. The impacts of large scale land use change on regional air temperature and its variability[J]. China Basic Science, 2015, 17(5): 34-39.
徐忠峰, 张炜月, 郭维栋. 大尺度土地利用变化对区域气温及其变率的影响[J]. 中国基础科学, 2015, 17(5): 34-39.
39 PIELKE S R. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall[J]. Reviews of Geophysics, 2001, 39(2): 151-177.
40 BAO X H, ZHANG F Q. Impacts of the mountain-Plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over Northern China[J]. Atmospheric Chemistry and Physics, 2013, 13(14): 6 965-6 982.
41 ZHENG X Y, ELTAHIR E A B. A soil moisture-rainfall feedback mechanism: 2. numerical experiments[J]. Water Resources Research, 1998, 34(4): 777-785.
42 FINDELL K L, ELTAHIR E A B. Atmospheric controls on soil moisture-boundary layer interactions. part I: framework development[J]. Journal of Hydrometeorology, 2003, 4(3): 552-569.
43 LUAN Lan, MENG Xianhong, Shihua LÜ, et al. Simulation on afternoon convective precipitation triggered by soil moisture over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(4): 873-885.
栾澜, 孟宪红, 吕世华, 等. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.
44 SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
45 TAYLOR C M, de JEU R A M, GUICHARD F, et al. Afternoon rain more likely over drier soils[J]. Nature, 2012, 489 (7 416): 423-426.
46 TAYLOR C M, GOUNOU A, GUICHARD F, et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns[J]. Nature Geoscience, 2011, 4(7): 430-433.
47 SONG Y Y, WEI J F. Diurnal cycle of summer precipitation over the North China Plain and associated land-atmosphere interactions: evaluation of ERA5 and MERRA-2[J]. International Journal of Climatology, 2021, 41(13): 6 031-6 046.
48 PAN H, CHEN G X. Diurnal variations of precipitation over North China regulated by the mountain-Plains solenoid and boundary-layer inertial oscillation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 863-884.
49 SCHÄR C, LÜTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999,12(3): 722-741.
50 WEI J, SU H, YANG Z L. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe[J]. Climate Dynamics, 2016, 46(1): 467-481.
51 BETTS A K, JAKOB C. Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D20). DOI: 10.1029/2001JD000427 .
[1] 韩岩松, 姜伟, 肖玉雯, 雍阳阳, 余克服. 全球变化背景下热带气旋主要变化特征及影响因素[J]. 地球科学进展, 2023, 38(5): 515-532.
[2] 张京, 宋照亮, 李强, 孙少波, 郝倩, 冉祥滨, 胡伟, 刘洪妍. 沿海地区气溶胶硅的组成、来源及其生态效应研究进展[J]. 地球科学进展, 2022, 37(6): 563-574.
[3] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[4] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[5] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[6] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[7] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[8] 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
[9] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[10] 张世春,王毅勇,童全松. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 2013, 28(1): 62-70.
[11] 郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.
[12] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[13] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的 210Pb和 7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[14] 葛茂发,刘 泽,王炜罡. 二次光化学氧化剂与气溶胶间的非均相过程[J]. 地球科学进展, 2009, 24(4): 351-362.
[15] 申彦波,赵宗慈,石广玉. 地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展[J]. 地球科学进展, 2008, 23(9): 915-924.
阅读次数
全文


摘要