地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 890 -903. doi: 10.11867/j.issn.1001-8166.2023.056

综述与评述 上一篇    下一篇

海洋大火成岩省与白垩纪全球大洋缺氧事件的研究进展
江强 1 , 2( ), 邱楠生 1 , 2   
  1. 1.中国石油大学(北京)油气资源与工程全国重点实验室, 北京 102249
    2.中国石油大学(北京)地球科学学院, 北京 102249
  • 收稿日期:2023-07-25 修回日期:2023-08-20 出版日期:2023-09-10
  • 基金资助:
    国家自然科学基金项目(42302339);中央高校基本科研业务费专项资金项目(2462022BJRC011)

Research Progress on Cretaceous Oceanic Large Igneous Provinces and Anoxic Events

Qiang JIANG 1 , 2( ), Nansheng QIU 1 , 2   

  1. 1.National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    2.College of Geosciences, China University of Petroleum, Beijing 102249, China
  • Received:2023-07-25 Revised:2023-08-20 Online:2023-09-10 Published:2023-09-25
  • About author:JIANG Qiang, Lecturer, research areas include isotope geochronology and geochemistry. E-mail: q.jiang@cup.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42302339);The Fundamental Research Funds for the Central Universities(2462022BJRC011)

形成于白垩纪期间的3个海洋大火成岩省——Kerguelen大火成岩省、Ontong Java大火成岩省和Caribbean大火成岩省被普遍认为是造成白垩纪2次全球性大洋缺氧事件的原因。建立大火成岩省与大洋缺氧事件之间因果关系的前提条件是二者同时发生。然而,由于在研究海洋大火成岩省的喷发年龄时,常用的定年对象容易受到海水蚀变等作用的影响,导致获得的年龄并不能都代表火山活动的时间。通过对3个海洋大火成岩省的所有年龄数据进行收集、可靠性评估和筛选,发现现有的可靠年龄数据虽然能证明大洋缺氧事件发生时3个大火成岩省有同时期的喷发活动,但大火成岩省的喷发时长和喷发节奏等方面的特征尚不明确,其与大洋缺氧事件之间的因果关系还有待于利用更多的年龄数据进行深入研究。

The three Cretaceous oceanic large igneous provinces of Kerguelen, Ontong Java, and Caribbean have been widely regarded as the triggers of the two Cretaceous global oceanic anoxic events. Synchronicity is the premise for ascribing a causal relationship between an oceanic large igneous province and an oceanic anoxic event. However, owing to the detrimental effect of seawater alteration on commonly used dating materials in oceanic basalts, the ages that have been published for oceanic large igneous provinces are not all robust. In this study, we compiled all published dating results for oceanic large igneous provinces and assessed the robustness of each age data. Results show that although the quality-filtered robust ages of the oceanic large igneous provinces can provide evidence of the existence of contemporaneous eruptions with the oceanic anoxic events, the eruptive duration and tempo of the oceanic large igneous provinces remain unclear. More age data are required to constrain the possible causal relationship between the three oceanic large igneous provinces and the two Cretaceous global oceanic anoxic events.

中图分类号: 

图1 白垩纪海洋大火成岩省的分布(据参考文献[ 10 ]修改)
Fig. 1 Distribution of Cretaceous oceanic large igneous provincesmodified after reference 10 ])
图2 Kerguelen大火成岩省分布图
海底测深图用GeoMapApp软件 36 绘制;年龄数据(Ma)及其来源见附表2(脚注二维码);CKP:中Kerguelen高原;EB:Elan Bank;NKP:北Kerguelen高原;SKP:南Kerguelen高原
Fig. 2 Bathymetric map showing the Kerguelen large igneous province
The map was made using GeoMapApp 36 . The age data (Ma) are shown in supplementary Table 2 (QR code in footnote). CKP: Central Kerguelen Plateau; EB: Elan Bank; NKP: Northern Kerguelen Plateau; SKP: Southern Kerguelen Plateau
图3 Ontong Java大火成岩省分布图
海底测深图用GeoMapApp软件 36 绘制;年龄数据(Ma)及其来源见附表3(脚注二维码)
Fig. 3 Bathymetric map showing the Ontong Java large igneous province
The map was made using GeoMapApp 36 . The age data (Ma) are shown in supplementary Table 3 (QR code in footnote)
图4 Caribbean大火成岩省分布图
海底测深图用GeoMapApp软件 36 绘制;年龄数据(Ma)及其来源见附表4(脚注二维码)
Fig. 4 Bathymetric map showing the Caribbean large igneous provinceannotated with robust age data
The map was made using GeoMapApp 36 . The age data (Ma) are shown in supplementary Table 4 (QR code in footnote)
图5 参考文献中的海洋大火成岩省年龄的分布及与白垩纪大洋缺氧事件起始年龄的比较
实心方框的宽度表示年龄的2 σ误差;年龄数据及参考文献见附表1(脚注二维码)
Fig. 5 Distribution of published ages for oceanic large igneous provinces and comparison with the onset age of Cretaceous oceanic anoxic events
Width of filled bars indicates 2 σ uncertainty. The age data and references are provided in supplementary Table 1 (QR code in footnote)
图6 海洋大火成岩省的可靠年龄的分布及与白垩纪大洋缺氧事件起始年龄的比较
实心方框的宽度表示年龄的2 σ误差;年龄数据及参考文献见附表2~4(脚注二维码)
Fig. 6 Distribution of filtered robust ages for oceanic large igneous provinces and comparison with the onset age of Cretaceous oceanic anoxic events
Width of filled and bars indicates 2 σ uncertainty. The robust ages are presented in supplementary Tables 2~4 (QR code in footnote)
1 BRYAN S E, ERNST R E. Revised definition of Large Igneous Provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/2/3/4): 175-202.
2 WIGNALL P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.
3 ZHANG Zhaochong, ZHU Jiang, CHENG Zhiguo, et al. Classification, genesis of large igneous Province associated with its effect on Earth system[J]. Acta Geologica Sinica, 2022, 96(12):4 057-4 090.
张招崇, 朱江, 程志国, 等. 大火成岩省的类型、成因及其地球系统意义[J]. 地质学报, 2022, 96(12):4 057-4 090.
4 ZHANG Shuanhong, PENG Peng. Proterozoic large igneous provinces and implications for paleogeographic and paleoenvironmental reconstructions[J]. Chinese Science Bulletin, 2023, 68(18): 2 324-2 340.
张拴宏, 彭澎.元古宙大火成岩省与超大陆重建及古环境[J]. 科学通报, 2023, 68(18): 2 324-2 340.
5 ZHANG Zhaochong. A discussion on some important problems concerning the Emeishan large igneous Province[J]. Geology in China, 2009, 36(3):634-646.
张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3):634-646.
6 SHELLNUTT J G. The Emeishan large igneous province: a synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394.
7 YANG Shufeng, CHEN Hanlin, LI Zilong, et al. Early Permian Tarim large igneous province in northwest China[J]. Science China: Earth Sciences, 2014, 44(2): 187-199.
杨树锋, 陈汉林, 厉子龙, 等. 塔里木早二叠世大火成岩省 [J]. 中国科学:地球科学, 2014, 44(2): 187-199.
8 XU Yigang, ZHONG Yuting, WEI Xun, et al. Permian mantle plumes and Earth’s surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3):I0001-I0001, 359-373.
徐义刚, 钟玉婷, 位荀, 等. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报, 2017, 36(3):I0001-I0001, 359-373.
9 CHEN Jun, XU Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: progresses and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 374-393.
陈军, 徐义刚. 二叠纪大火成岩省的环境与生物效应: 进展与前瞻[J]. 矿物岩石地球化学通报, 2017, 36(3): 374-393.
10 JIANG Q, JOURDAN F, OLIEROOK H K H, et al. An appraisal of the ages of Phanerozoic large igneous provinces[J]. Earth-Science Reviews, 2023, 237. DOI: 10.1016/j.earscirev.2023.104314 .
11 SETON M, MÜLLER R D, ZAHIROVIC S, et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10). DOI:10.1029/2020GC009214 .
12 DOUCET L S, LI Z X, ERNST R E, et al. Coupled supercontinent-mantle plume events evidenced by oceanic plume record[J]. Geology, 2020, 48(2): 159-163.
13 SHEN Shuzhong, ZHANG Hua. What caused five mass extinctions? [J]. Chinese Science Bulletin, 2017, 62(11): 1 119-1 135.
沈树忠, 张华. 什么引起五次生物大灭绝?[J]. 科学通报, 2017, 62(11): 1 119-1 135.
14 DERAKHSHI M, ERNST R E, KAMO S L. Ordovician-Silurian volcanism in northern Iran: implications for a new Large Igneous Province (LIP) and a robust candidate for the Late Ordovician mass extinction[J]. Gondwana Research, 2022, 107: 256-280.
15 COURTILLOT V, KRAVCHINSKY V A, QUIDELLEUR X, et al. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?[J]. Earth and Planetary Science Letters, 2010, 300(3/4): 239-245.
16 RICCI J, QUIDELLEUR X, PAVLOV V, et al. New 40Ar/39Ar and K-Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian-Famennian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 531-540.
17 REICHOW M K, SAUNDERS A D, WHITE R V, et al. 40Ar/39Ar dates from the West Siberian Basin: siberian flood basalt Province doubled[J]. Science, 2002, 296(5 574): 1 846-1 849.
18 BURGESS S D, BOWRING S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction[J]. Science Advances, 2015, 1(7). DOI: 10.1126/sciadv.1500470 .
19 MARZOLI A, CALLEGARO S, dal CORSO J, et al. The Central Atlantic Magmatic Province (CAMP): a review[M]// The Late Triassic World. Cham: Springer, 2018: 91-125.
20 SPRAIN C J, RENNE P R, VANDERKLUYSEN L, et al. The eruptive tempo of deccan volcanism in relation to the Cretaceous-Paleogene boundary[J]. Science, 2019, 363(6 429): 866-870.
21 BLAIR S, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6 218): 182-184.
22 HU Xiumian, LI Juan, HAN Zhong, et al. Two types of hyperthermal events in the Mesozoic-Cenozoic: environmental impacts, biotic effects, and driving mechanisms[J]. Science China: Earth Sciences, 2020, 50(8): 1 023-1 043.
胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学: 地球科学, 2020, 50(8): 1 023-1 043.
23 SCHLANGER S O, JENKYNS H. Cretaceous oceanic anoxic events: causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3): 179-184.
24 HU Xiumian. Middle Cretaceous abnormal geological events and global change[J]. Earth Science Frontiers, 2005, 12(2): 222-230.
胡修棉. 白垩纪中期异常地质事件与全球变化[J]. 地学前缘, 2005, 12(2): 222-230.
25 FAN Qingchao, XU Zhaokai. A review of Cretaceous Ocean anoxia events[J]. Marine Sciences, 2020, 44(2): 138-145.
范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.
26 ERBA E. Calcareous nannofossils and Mesozoic oceanic anoxic events[J]. Marine Micropaleontology, 2004, 52(1/2/3/4): 85-106.
27 CHARBONNIER G, FÖLLMI K B. Mercury enrichments in lower Aptian sediments support the link between Ontong Java large igneous Province activity and oceanic anoxic episode 1a[J]. Geology, 2017, 45(1): 63-66.
28 PERCIVAL L M E, JENKYNS H C, MATHER T A, et al. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events[J]. American Journal of Science, 2018, 318(8): 799-860.
29 LI Congying, WU Sifan. Advances in research on stable metal isotopes in oceanic anoxic events[J]. Advances in Earth Science, 2022, 37(11): 1 127-1 140.
李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11): 1 127-1 140.
30 VERATI C, JOURDAN F. Modelling effect of sericitization of plagioclase on the 40 and 40 chronometers: implication for dating basaltic rocks and mineral deposits[J]. Geological Society, London, Special Publications, 2014, 378(1): 155-174.
31 JIANG Q, JOURDAN F, OLIEROOK H K H, et al. 40Ar/39Ar dating of basaltic rocks and the pitfalls of plagioclase alteration[J]. Geochimica et Cosmochimica Acta, 2021, 314: 334-357.
32 JIANG Q, JOURDAN F, OLIEROOK H K H, et al. Longest continuously erupting large igneous province driven by plume-ridge interaction[J]. Geology, 2021, 49(2): 206-210.
33 DAVIDSON P C, KOPPERS A A P, SANO T, et al. A younger and protracted emplacement of the Ontong Java Plateau[J]. Science, 2023, 380(6 650): 1 185-1 188.
34 TAKIGAMI Y, AMARI S, OZIMA M, et al. 40Ar/39Ar geochronological studies of basalts from hole 462A, Nauru Basin, deep sea drilling project leg 89[M]//Initial reports of the deep sea drilling project. U.S.: U.S. Government Printing Office, 1986.
35 OZIMA M, SAITO K, TAKIGAMI Y. 40Ar-39Ar geochronological studies on rocks drilled at holes 462 and 462A, deep sea drilling project leg 61[M]// Initial reports of the deep sea drilling project. U.S.:U.S. Government Printing Office, 1981.
36 RYAN W B F, CARBOTTE S M, COPLAN J O, et al. Global multi-resolution topography synthesis[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3). DOI:10.1029/2008GC002332 .
37 COFFIN M F, PRINGLE M S, DUNCAN R A, et al. Kerguelen hotspot Magma output since 130 Ma[J]. Journal of Petrology, 2002, 43(7): 1 121-1 137.
38 DUNCAN R A. A time frame for construction of the Kerguelen Plateau and Broken ridge[J]. Journal of Petrology, 2002, 43(7): 1 109-1 119.
39 WEIS D, FREY F A. Submarine basalts of the northern Kerguelen Plateau: interaction between the Kerguelen plume and the southeast Indian ridge revealed at ODP site 1140[J]. Journal of Petrology, 2002, 43(7): 1 287-1 309.
40 MUTTER J C, CANDE S C. The early opening between Broken Ridge and Kerguelen Plateau[J]. Earth and Planetary Science Letters, 1983, 65(2): 369-376.
41 OLIEROOK H K H, MERLE R E, JOURDAN F. Toward a Greater Kerguelen large igneous province: evolving mantle source contributions in and around the Indian Ocean[J]. Lithos, 2017, 282: 163-172.
42 TEJADA M L G, MAHONEY J J, DUNCAN R A, et al. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of ontong Java plateau[J]. Journal of Petrology, 1996, 37(2): 361-394.
43 TEJADA M L G, SANO T, HANYU T, et al. New evidence for the Ontong Java Nui hypothesis[J]. Scientific Reports, 2023, 13(1): 1-11.
44 TIMM C, HOERNLE K, WERNER R, et al. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 135-146.
45 HOERNLE K, HAUFF F, van den BOGAARD P, et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 196-7 219.
46 TAYLOR B. The single largest oceanic plateau: ontong Java-Manihiki-Hikurangi[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 372-380.
47 HOCHMUTH K, GOHL K, UENZELMANN-NEBEN G. Playing jigsaw with Large Igneous Provinces—a plate tectonic reconstruction of Ontong Java Nui, West Pacific[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(11): 3 789-3 807.
48 DAVIDSON P C, KOPPERS A A P, KONTER J G. Rapid formation of the Ellice and osbourn basins and ontong Java Nui breakup kinematics[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(7). DOI:10.1029/2022GC010592 .
49 TEJADA M L G, MAHONEY J J, NEAL C R, et al. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the ontong Java plateau[J]. Journal of Petrology, 2002, 43(3): 449-484.
50 DÜRKEFÄLDEN A, HOERNLE K, HAUFF F, et al. Age and geochemistry of the Beata Ridge: primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province[J]. Lithos, 2019, 328: 69-87.
51 SINTON C W, DUNCAN R A, STOREY M, et al. An oceanic flood basalt Province within the Caribbean plate[J]. Earth and Planetary Science Letters, 1998, 155(3/4): 221-235.
52 KERR A C, MARRINER G F, TARNEY J, et al. Cretaceous basaltic terranes in western Columbia: elemental, chronological and Sr-Nd isotopic constraints on petrogenesis[J]. Journal of Petrology, 1997, 38(6): 677-702.
53 HOERNLE K, HAUFF F, van den BOGAARD P. 70 m.y. history (139-69 Ma) for the Caribbean large igneous Province[J]. Geology, 2004, 32(8): 697-700.
54 LOEWEN M W, DUNCAN R A, KENT A J R, et al. Prolonged plume volcanism in the Caribbean Large Igneous Province: new insights from Curaçao and Haiti[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4 241-4 259.
55 BURKE K. Tectonic evolution of the Caribbean[J]. Annual Review of Earth and Planetary Sciences, 1988, 16: 201-230.
56 JOURDAN F, FÉRAUD G, BERTRAND H, et al. Distinct brief major events in the Karoo large igneous Province clarified by new 40Ar/39Ar ages on the Lesotho basalts[J]. Lithos, 2007, 98(1/2/3/4): 195-209.
57 RENNE P R, SPRAIN C J, RICHARDS M A, et al. State shift in deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact[J]. Science, 2015, 350(6 256): 76-78.
58 McDOUGALL I, HARRISON T M. Geochronology and thermochronology by the 40Ar/39Ar method[M]. 2nd ed. New York: Oxford University Press, 1999.
59 JOURDAN F, RENNE P R. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K-Ar standards[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 387-402.
60 RENNE P R, MUNDIL R, BALCO G, et al. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5 349-5 367.
61 KOPPERS A A P, RUSSELL J A, ROBERTS J, et al. Age systematics of two young en echelon Samoan volcanic trails[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7). DOI: 10.1029/2010GC003438 .
62 MARK D F, BARFOD D, STUART F M, et al. The ARGUS multicollector noble gas mass spectrometer: performance for 40Ar/39Ar geochronology[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10). DOI: 10.1029/2009GC002643 .
63 RENNE P R, DECKART K, ERNESTO M, et al. Age of the Ponta Grossa dike swarm (Brazil), and implications to Parana´flood volcanism[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 199-211.
64 JOURDAN F, FÉRAUD G, BERTRAND H, et al. Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data[J]. Geology, 2005, 33(9). DOI: 10.1130/G21632.1 .
65 LEE J Y, MARTI K, SEVERINGHAUS J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4 507-4 512.
66 LI Y X, BRALOWER T J, MONTAÑEZ I P, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120Ma)[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 88-100.
67 LI Y X, MONTAÑEZ I P, LIU Z H, et al. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2)[J]. Earth and Planetary Science Letters, 2017, 462: 35-46.
68 SCHOENE B, CONDON D J, MORGAN L, et al. Precision and accuracy in geochronology[J]. Elements, 2013, 9(1): 19-24.
69 PHAM T T, SHELLNUTT J G, TRAN T A, et al. Petrogenesis of silicic rocks from the Phan Si Pan-Tu Le region of the Emeishan large igneous province, northwestern Vietnam[J]. Geological Society, London, Special Publications, 2022, 518(1): 227-254.
70 STEIGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362.
71 RENNE P R, BALCO G, LUDWIG K R, et al. Response to the comment by W.H. Schwarzet al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renneet al. (2010)[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 5 097-5 100.
72 WRIGHT J E, WYLD S J. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: one Great Arc of the Caribbean (?)[J]. Geosphere, 2011, 7(2): 468-493.
73 JIANG Q, JOURDAN F, OLIEROOK H K H, et al. Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31). DOI: 10.1073/pnas.2202039119 .
74 MAHONEY J J, STOREY M, DUNCAN R A, et al. Geochemistry and age of the ontong Java plateau[M]// The Mesozoic Pacific: geology, tectonics, and volcanism: a volume in memory of sy schlanger. Washington, D.C.: American Geophysical Union, 1993: 233-261.
75 ESCUDER-VIRUETE J, PÉREZ-ESTAÚN A, CONTRERAS F, et al. Plume mantle source heterogeneity through time: insights from the Duarte Complex, Hispaniola, northeastern Caribbean[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4). DOI: 10.1029/2006JB004323 .
76 WANG Chengshan, HU Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21.
77 ERBA E, DUNCAN R A, BOTTINI C, et al. Environmental consequences of ontong Java plateau and Kerguelen Plateau volcanism[M]// The origin, evolution, and environmental impact of oceanic large igneous provinces. Washington: Geological Society of America, 2015: 271-303.
78 MEHAY S, KELLER C E, BERNASCONI S M, et al. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis[J]. Geology, 2009, 37(9): 819-822.
79 BRALOWER T, FULLAGAR P, PAULL C, et al. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections [J]. Geological Society of America Bulletin, 1997, 109(11): 1 421-1 442.
80 TEJADA M L G, SUZUKI K, KURODA J, et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event[J]. Geology, 2009, 37(9): 855-858.
81 MATSUMOTO H, COCCIONI R, FRONTALINI F, et al. Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events[J]. Nature Communications, 2022, 13(1): 1-9.
82 ZHANG Y, OGG J G, MINGUEZ D, et al. Magnetostratigraphy of U-Pb-dated boreholes in Svalbard, Norway, implies that magnetochron M0r (a proposed Barremian-Aptian boundary marker) begins at 121.2±0.4 Ma [J]. Geology, 2021, 49(6): 733-737.
83 MALINVERNO A, ERBA E, HERBERT T D. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE[J]. Paleoceanography, 2010, 25(2). DOI:10.1029/2009PA001769 .
84 JONES M M, SAGEMAN B B, SELBY D, et al. Regional chronostratigraphic synthesis of the cenomanian-turonian oceanic anoxic event 2 (OAE2) interval, western interior basin (USA): new re-Os chemostratigraphy and 40Ar/39Ar geochronology[J]. GSA Bulletin, 2021, 133(5/6): 1 090-1 104.
85 RÉVILLON S, HALLOT E, ARNDT N T, et al. A complex history for the Caribbean Plateau: petrology, geochemistry, and geochronology of the Beata ridge, South Hispaniola[J]. The Journal of Geology, 2000, 108(6): 641-661.
86 HOMRIGHAUSEN S, HOERNLE K, HAUFF F, et al. Global distribution of the HIMU end member: formation through Archean plume-lid tectonics[J]. Earth-Science Reviews, 2018, 182: 85-101.
87 SCHOENE B, EDDY M P, SAMPERTON K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction[J]. Science, 2019, 363(6 429): 862-866.
88 MARZOLI A, BERTRAND H, YOUBI N, et al. The Central Atlantic Magmatic Province (CAMP) in Morocco[J]. Journal of Petrology, 2019, 60(5): 945-996.
89 SHELLNUTT J G, PHAM T T, DENYSZYN S W, et al. Magmatic duration of the Emeishan large igneous province: insight from northern Vietnam[J]. Geology, 2020, 48(5): 457-461.
90 ZHU J, ZHANG Z C, SANTOSH M, et al. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: implication for end-Guadalupian extinction of marine biota[J]. Gondwana Research, 2021, 92: 228-238.
91 HUANG H, HUYSKENS M H, YIN Q Z, et al. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary [J]. Geology, 2022, 50(9): 1 083-1 087.
92 BRAND U, POSENATO R, CAME R, et al. The end‐Permian mass extinction: a rapid volcanic CO2 and CH4‐climatic catastrophe[J]. Chemical Geology, 2012, 322: 121-144.
93 CUI Y, LI M S, van SOELEN E E, et al. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37). DOI: 10.1073/pnas.2014701118 .
94 SHEN Shuzhong, ZHANG Feifei, WEN Qian, et al. Deep-time major biological and climatic events versus global changes: progresses and challenges [J]. Chinese Science Bulletin, 2023. DOI: 10.1360/TB-2023-0218 .
沈树忠, 张飞飞, 文倩, 等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报, 2023. DOI: 10.1360/TB-2023-0218 .
95 BLÄTTLER C L, JENKYNS H C, REYNARD L M, et al. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 77-88.
96 BOTTINI C, COHEN A S, ERBA E, et al. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a[J]. Geology, 2012, 40(7): 583-586.
[1] 李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11): 1127-1140.
[2] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
[3] 姜衍文,吴智勇. 大洋钻探与世界油气资源[J]. 地球科学进展, 1995, 10(3): 251-253.
阅读次数
全文


摘要