1 |
BRYAN S E, ERNST R E. Revised definition of Large Igneous Provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/2/3/4): 175-202.
|
2 |
WIGNALL P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.
|
3 |
ZHANG Zhaochong, ZHU Jiang, CHENG Zhiguo, et al. Classification, genesis of large igneous Province associated with its effect on Earth system[J]. Acta Geologica Sinica, 2022, 96(12):4 057-4 090.
|
|
张招崇, 朱江, 程志国, 等. 大火成岩省的类型、成因及其地球系统意义[J]. 地质学报, 2022, 96(12):4 057-4 090.
|
4 |
ZHANG Shuanhong, PENG Peng. Proterozoic large igneous provinces and implications for paleogeographic and paleoenvironmental reconstructions[J]. Chinese Science Bulletin, 2023, 68(18): 2 324-2 340.
|
|
张拴宏, 彭澎.元古宙大火成岩省与超大陆重建及古环境[J]. 科学通报, 2023, 68(18): 2 324-2 340.
|
5 |
ZHANG Zhaochong. A discussion on some important problems concerning the Emeishan large igneous Province[J]. Geology in China, 2009, 36(3):634-646.
|
|
张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3):634-646.
|
6 |
SHELLNUTT J G. The Emeishan large igneous province: a synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394.
|
7 |
YANG Shufeng, CHEN Hanlin, LI Zilong, et al. Early Permian Tarim large igneous province in northwest China[J]. Science China: Earth Sciences, 2014, 44(2): 187-199.
|
|
杨树锋, 陈汉林, 厉子龙, 等. 塔里木早二叠世大火成岩省 [J]. 中国科学:地球科学, 2014, 44(2): 187-199.
|
8 |
XU Yigang, ZHONG Yuting, WEI Xun, et al. Permian mantle plumes and Earth’s surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3):I0001-I0001, 359-373.
|
|
徐义刚, 钟玉婷, 位荀, 等. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报, 2017, 36(3):I0001-I0001, 359-373.
|
9 |
CHEN Jun, XU Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: progresses and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 374-393.
|
|
陈军, 徐义刚. 二叠纪大火成岩省的环境与生物效应: 进展与前瞻[J]. 矿物岩石地球化学通报, 2017, 36(3): 374-393.
|
10 |
JIANG Q, JOURDAN F, OLIEROOK H K H, et al. An appraisal of the ages of Phanerozoic large igneous provinces[J]. Earth-Science Reviews, 2023, 237. DOI: 10.1016/j.earscirev.2023.104314 .
|
11 |
SETON M, MÜLLER R D, ZAHIROVIC S, et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10). DOI:10.1029/2020GC009214 .
|
12 |
DOUCET L S, LI Z X, ERNST R E, et al. Coupled supercontinent-mantle plume events evidenced by oceanic plume record[J]. Geology, 2020, 48(2): 159-163.
|
13 |
SHEN Shuzhong, ZHANG Hua. What caused five mass extinctions? [J]. Chinese Science Bulletin, 2017, 62(11): 1 119-1 135.
|
|
沈树忠, 张华. 什么引起五次生物大灭绝?[J]. 科学通报, 2017, 62(11): 1 119-1 135.
|
14 |
DERAKHSHI M, ERNST R E, KAMO S L. Ordovician-Silurian volcanism in northern Iran: implications for a new Large Igneous Province (LIP) and a robust candidate for the Late Ordovician mass extinction[J]. Gondwana Research, 2022, 107: 256-280.
|
15 |
COURTILLOT V, KRAVCHINSKY V A, QUIDELLEUR X, et al. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?[J]. Earth and Planetary Science Letters, 2010, 300(3/4): 239-245.
|
16 |
RICCI J, QUIDELLEUR X, PAVLOV V, et al. New 40Ar/39Ar and K-Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian-Famennian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 531-540.
|
17 |
REICHOW M K, SAUNDERS A D, WHITE R V, et al. 40Ar/39Ar dates from the West Siberian Basin: siberian flood basalt Province doubled[J]. Science, 2002, 296(5 574): 1 846-1 849.
|
18 |
BURGESS S D, BOWRING S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction[J]. Science Advances, 2015, 1(7). DOI: 10.1126/sciadv.1500470 .
|
19 |
MARZOLI A, CALLEGARO S, dal CORSO J, et al. The Central Atlantic Magmatic Province (CAMP): a review[M]// The Late Triassic World. Cham: Springer, 2018: 91-125.
|
20 |
SPRAIN C J, RENNE P R, VANDERKLUYSEN L, et al. The eruptive tempo of deccan volcanism in relation to the Cretaceous-Paleogene boundary[J]. Science, 2019, 363(6 429): 866-870.
|
21 |
BLAIR S, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6 218): 182-184.
|
22 |
HU Xiumian, LI Juan, HAN Zhong, et al. Two types of hyperthermal events in the Mesozoic-Cenozoic: environmental impacts, biotic effects, and driving mechanisms[J]. Science China: Earth Sciences, 2020, 50(8): 1 023-1 043.
|
|
胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学: 地球科学, 2020, 50(8): 1 023-1 043.
|
23 |
SCHLANGER S O, JENKYNS H. Cretaceous oceanic anoxic events: causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3): 179-184.
|
24 |
HU Xiumian. Middle Cretaceous abnormal geological events and global change[J]. Earth Science Frontiers, 2005, 12(2): 222-230.
|
|
胡修棉. 白垩纪中期异常地质事件与全球变化[J]. 地学前缘, 2005, 12(2): 222-230.
|
25 |
FAN Qingchao, XU Zhaokai. A review of Cretaceous Ocean anoxia events[J]. Marine Sciences, 2020, 44(2): 138-145.
|
|
范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.
|
26 |
ERBA E. Calcareous nannofossils and Mesozoic oceanic anoxic events[J]. Marine Micropaleontology, 2004, 52(1/2/3/4): 85-106.
|
27 |
CHARBONNIER G, FÖLLMI K B. Mercury enrichments in lower Aptian sediments support the link between Ontong Java large igneous Province activity and oceanic anoxic episode 1a[J]. Geology, 2017, 45(1): 63-66.
|
28 |
PERCIVAL L M E, JENKYNS H C, MATHER T A, et al. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events[J]. American Journal of Science, 2018, 318(8): 799-860.
|
29 |
LI Congying, WU Sifan. Advances in research on stable metal isotopes in oceanic anoxic events[J]. Advances in Earth Science, 2022, 37(11): 1 127-1 140.
|
|
李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11): 1 127-1 140.
|
30 |
VERATI C, JOURDAN F. Modelling effect of sericitization of plagioclase on the 40 and 40 chronometers: implication for dating basaltic rocks and mineral deposits[J]. Geological Society, London, Special Publications, 2014, 378(1): 155-174.
|
31 |
JIANG Q, JOURDAN F, OLIEROOK H K H, et al. 40Ar/39Ar dating of basaltic rocks and the pitfalls of plagioclase alteration[J]. Geochimica et Cosmochimica Acta, 2021, 314: 334-357.
|
32 |
JIANG Q, JOURDAN F, OLIEROOK H K H, et al. Longest continuously erupting large igneous province driven by plume-ridge interaction[J]. Geology, 2021, 49(2): 206-210.
|
33 |
DAVIDSON P C, KOPPERS A A P, SANO T, et al. A younger and protracted emplacement of the Ontong Java Plateau[J]. Science, 2023, 380(6 650): 1 185-1 188.
|
34 |
TAKIGAMI Y, AMARI S, OZIMA M, et al. 40Ar/39Ar geochronological studies of basalts from hole 462A, Nauru Basin, deep sea drilling project leg 89[M]//Initial reports of the deep sea drilling project. U.S.: U.S. Government Printing Office, 1986.
|
35 |
OZIMA M, SAITO K, TAKIGAMI Y. 40Ar-39Ar geochronological studies on rocks drilled at holes 462 and 462A, deep sea drilling project leg 61[M]// Initial reports of the deep sea drilling project. U.S.:U.S. Government Printing Office, 1981.
|
36 |
RYAN W B F, CARBOTTE S M, COPLAN J O, et al. Global multi-resolution topography synthesis[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3). DOI:10.1029/2008GC002332 .
|
37 |
COFFIN M F, PRINGLE M S, DUNCAN R A, et al. Kerguelen hotspot Magma output since 130 Ma[J]. Journal of Petrology, 2002, 43(7): 1 121-1 137.
|
38 |
DUNCAN R A. A time frame for construction of the Kerguelen Plateau and Broken ridge[J]. Journal of Petrology, 2002, 43(7): 1 109-1 119.
|
39 |
WEIS D, FREY F A. Submarine basalts of the northern Kerguelen Plateau: interaction between the Kerguelen plume and the southeast Indian ridge revealed at ODP site 1140[J]. Journal of Petrology, 2002, 43(7): 1 287-1 309.
|
40 |
MUTTER J C, CANDE S C. The early opening between Broken Ridge and Kerguelen Plateau[J]. Earth and Planetary Science Letters, 1983, 65(2): 369-376.
|
41 |
OLIEROOK H K H, MERLE R E, JOURDAN F. Toward a Greater Kerguelen large igneous province: evolving mantle source contributions in and around the Indian Ocean[J]. Lithos, 2017, 282: 163-172.
|
42 |
TEJADA M L G, MAHONEY J J, DUNCAN R A, et al. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of ontong Java plateau[J]. Journal of Petrology, 1996, 37(2): 361-394.
|
43 |
TEJADA M L G, SANO T, HANYU T, et al. New evidence for the Ontong Java Nui hypothesis[J]. Scientific Reports, 2023, 13(1): 1-11.
|
44 |
TIMM C, HOERNLE K, WERNER R, et al. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 135-146.
|
45 |
HOERNLE K, HAUFF F, van den BOGAARD P, et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 196-7 219.
|
46 |
TAYLOR B. The single largest oceanic plateau: ontong Java-Manihiki-Hikurangi[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 372-380.
|
47 |
HOCHMUTH K, GOHL K, UENZELMANN-NEBEN G. Playing jigsaw with Large Igneous Provinces—a plate tectonic reconstruction of Ontong Java Nui, West Pacific[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(11): 3 789-3 807.
|
48 |
DAVIDSON P C, KOPPERS A A P, KONTER J G. Rapid formation of the Ellice and osbourn basins and ontong Java Nui breakup kinematics[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(7). DOI:10.1029/2022GC010592 .
|
49 |
TEJADA M L G, MAHONEY J J, NEAL C R, et al. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the ontong Java plateau[J]. Journal of Petrology, 2002, 43(3): 449-484.
|
50 |
DÜRKEFÄLDEN A, HOERNLE K, HAUFF F, et al. Age and geochemistry of the Beata Ridge: primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province[J]. Lithos, 2019, 328: 69-87.
|
51 |
SINTON C W, DUNCAN R A, STOREY M, et al. An oceanic flood basalt Province within the Caribbean plate[J]. Earth and Planetary Science Letters, 1998, 155(3/4): 221-235.
|
52 |
KERR A C, MARRINER G F, TARNEY J, et al. Cretaceous basaltic terranes in western Columbia: elemental, chronological and Sr-Nd isotopic constraints on petrogenesis[J]. Journal of Petrology, 1997, 38(6): 677-702.
|
53 |
HOERNLE K, HAUFF F, van den BOGAARD P. 70 m.y. history (139-69 Ma) for the Caribbean large igneous Province[J]. Geology, 2004, 32(8): 697-700.
|
54 |
LOEWEN M W, DUNCAN R A, KENT A J R, et al. Prolonged plume volcanism in the Caribbean Large Igneous Province: new insights from Curaçao and Haiti[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4 241-4 259.
|
55 |
BURKE K. Tectonic evolution of the Caribbean[J]. Annual Review of Earth and Planetary Sciences, 1988, 16: 201-230.
|
56 |
JOURDAN F, FÉRAUD G, BERTRAND H, et al. Distinct brief major events in the Karoo large igneous Province clarified by new 40Ar/39Ar ages on the Lesotho basalts[J]. Lithos, 2007, 98(1/2/3/4): 195-209.
|
57 |
RENNE P R, SPRAIN C J, RICHARDS M A, et al. State shift in deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact[J]. Science, 2015, 350(6 256): 76-78.
|
58 |
McDOUGALL I, HARRISON T M. Geochronology and thermochronology by the 40Ar/39Ar method[M]. 2nd ed. New York: Oxford University Press, 1999.
|
59 |
JOURDAN F, RENNE P R. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K-Ar standards[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 387-402.
|
60 |
RENNE P R, MUNDIL R, BALCO G, et al. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5 349-5 367.
|
61 |
KOPPERS A A P, RUSSELL J A, ROBERTS J, et al. Age systematics of two young en echelon Samoan volcanic trails[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7). DOI: 10.1029/2010GC003438 .
|
62 |
MARK D F, BARFOD D, STUART F M, et al. The ARGUS multicollector noble gas mass spectrometer: performance for 40Ar/39Ar geochronology[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10). DOI: 10.1029/2009GC002643 .
|
63 |
RENNE P R, DECKART K, ERNESTO M, et al. Age of the Ponta Grossa dike swarm (Brazil), and implications to Parana´flood volcanism[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 199-211.
|
64 |
JOURDAN F, FÉRAUD G, BERTRAND H, et al. Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data[J]. Geology, 2005, 33(9). DOI: 10.1130/G21632.1 .
|
65 |
LEE J Y, MARTI K, SEVERINGHAUS J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4 507-4 512.
|
66 |
LI Y X, BRALOWER T J, MONTAÑEZ I P, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120Ma)[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 88-100.
|
67 |
LI Y X, MONTAÑEZ I P, LIU Z H, et al. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2)[J]. Earth and Planetary Science Letters, 2017, 462: 35-46.
|
68 |
SCHOENE B, CONDON D J, MORGAN L, et al. Precision and accuracy in geochronology[J]. Elements, 2013, 9(1): 19-24.
|
69 |
PHAM T T, SHELLNUTT J G, TRAN T A, et al. Petrogenesis of silicic rocks from the Phan Si Pan-Tu Le region of the Emeishan large igneous province, northwestern Vietnam[J]. Geological Society, London, Special Publications, 2022, 518(1): 227-254.
|
70 |
STEIGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362.
|
71 |
RENNE P R, BALCO G, LUDWIG K R, et al. Response to the comment by W.H. Schwarzet al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renneet al. (2010)[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 5 097-5 100.
|
72 |
WRIGHT J E, WYLD S J. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: one Great Arc of the Caribbean (?)[J]. Geosphere, 2011, 7(2): 468-493.
|
73 |
JIANG Q, JOURDAN F, OLIEROOK H K H, et al. Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31). DOI: 10.1073/pnas.2202039119 .
|
74 |
MAHONEY J J, STOREY M, DUNCAN R A, et al. Geochemistry and age of the ontong Java plateau[M]// The Mesozoic Pacific: geology, tectonics, and volcanism: a volume in memory of sy schlanger. Washington, D.C.: American Geophysical Union, 1993: 233-261.
|
75 |
ESCUDER-VIRUETE J, PÉREZ-ESTAÚN A, CONTRERAS F, et al. Plume mantle source heterogeneity through time: insights from the Duarte Complex, Hispaniola, northeastern Caribbean[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4). DOI: 10.1029/2006JB004323 .
|
76 |
WANG Chengshan, HU Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
|
|
王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21.
|
77 |
ERBA E, DUNCAN R A, BOTTINI C, et al. Environmental consequences of ontong Java plateau and Kerguelen Plateau volcanism[M]// The origin, evolution, and environmental impact of oceanic large igneous provinces. Washington: Geological Society of America, 2015: 271-303.
|
78 |
MEHAY S, KELLER C E, BERNASCONI S M, et al. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis[J]. Geology, 2009, 37(9): 819-822.
|
79 |
BRALOWER T, FULLAGAR P, PAULL C, et al. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections [J]. Geological Society of America Bulletin, 1997, 109(11): 1 421-1 442.
|
80 |
TEJADA M L G, SUZUKI K, KURODA J, et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event[J]. Geology, 2009, 37(9): 855-858.
|
81 |
MATSUMOTO H, COCCIONI R, FRONTALINI F, et al. Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events[J]. Nature Communications, 2022, 13(1): 1-9.
|
82 |
ZHANG Y, OGG J G, MINGUEZ D, et al. Magnetostratigraphy of U-Pb-dated boreholes in Svalbard, Norway, implies that magnetochron M0r (a proposed Barremian-Aptian boundary marker) begins at 121.2±0.4 Ma [J]. Geology, 2021, 49(6): 733-737.
|
83 |
MALINVERNO A, ERBA E, HERBERT T D. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE[J]. Paleoceanography, 2010, 25(2). DOI:10.1029/2009PA001769 .
|
84 |
JONES M M, SAGEMAN B B, SELBY D, et al. Regional chronostratigraphic synthesis of the cenomanian-turonian oceanic anoxic event 2 (OAE2) interval, western interior basin (USA): new re-Os chemostratigraphy and 40Ar/39Ar geochronology[J]. GSA Bulletin, 2021, 133(5/6): 1 090-1 104.
|
85 |
RÉVILLON S, HALLOT E, ARNDT N T, et al. A complex history for the Caribbean Plateau: petrology, geochemistry, and geochronology of the Beata ridge, South Hispaniola[J]. The Journal of Geology, 2000, 108(6): 641-661.
|
86 |
HOMRIGHAUSEN S, HOERNLE K, HAUFF F, et al. Global distribution of the HIMU end member: formation through Archean plume-lid tectonics[J]. Earth-Science Reviews, 2018, 182: 85-101.
|
87 |
SCHOENE B, EDDY M P, SAMPERTON K M, et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction[J]. Science, 2019, 363(6 429): 862-866.
|
88 |
MARZOLI A, BERTRAND H, YOUBI N, et al. The Central Atlantic Magmatic Province (CAMP) in Morocco[J]. Journal of Petrology, 2019, 60(5): 945-996.
|
89 |
SHELLNUTT J G, PHAM T T, DENYSZYN S W, et al. Magmatic duration of the Emeishan large igneous province: insight from northern Vietnam[J]. Geology, 2020, 48(5): 457-461.
|
90 |
ZHU J, ZHANG Z C, SANTOSH M, et al. Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: implication for end-Guadalupian extinction of marine biota[J]. Gondwana Research, 2021, 92: 228-238.
|
91 |
HUANG H, HUYSKENS M H, YIN Q Z, et al. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary [J]. Geology, 2022, 50(9): 1 083-1 087.
|
92 |
BRAND U, POSENATO R, CAME R, et al. The end‐Permian mass extinction: a rapid volcanic CO2 and CH4‐climatic catastrophe[J]. Chemical Geology, 2012, 322: 121-144.
|
93 |
CUI Y, LI M S, van SOELEN E E, et al. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37). DOI: 10.1073/pnas.2014701118 .
|
94 |
SHEN Shuzhong, ZHANG Feifei, WEN Qian, et al. Deep-time major biological and climatic events versus global changes: progresses and challenges [J]. Chinese Science Bulletin, 2023. DOI: 10.1360/TB-2023-0218 .
|
|
沈树忠, 张飞飞, 文倩, 等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报, 2023. DOI: 10.1360/TB-2023-0218 .
|
95 |
BLÄTTLER C L, JENKYNS H C, REYNARD L M, et al. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 77-88.
|
96 |
BOTTINI C, COHEN A S, ERBA E, et al. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a[J]. Geology, 2012, 40(7): 583-586.
|