地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 904 -915. doi: 10.11867/j.issn.1001-8166.2023.054

综述与评述 上一篇    下一篇

水成型铁锰成矿的纳米成因研究进展
张维石( ), 周怀阳( )   
  1. 同济大学 海洋与地球科学学院,上海 200092
  • 收稿日期:2023-07-03 修回日期:2023-08-02 出版日期:2023-09-10
  • 通讯作者: 周怀阳 E-mail:2031699@tongji.edu.cn;2031699@tongj.edu.cn;zhouhy@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(91428207);国家重点基础研究发展计划(2012CB417300)

Research Progress on the Nanogenesis of Hydrogenetic Fe-Mn Mineralization

Weishi ZHANG( ), Huaiyang ZHOU( )   

  1. School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
  • Received:2023-07-03 Revised:2023-08-02 Online:2023-09-10 Published:2023-09-25
  • Contact: Huaiyang ZHOU E-mail:2031699@tongji.edu.cn;2031699@tongj.edu.cn;zhouhy@tongji.edu.cn
  • About author:ZHANG Weishi, Master student, research areas include deep sea ferromanganese nodules/crusts. E-mail: 2031699@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(91428207);The Major State Basic Research Development Program of China(2012CB417300)

新生代深海铁锰矿床的大规模成矿是地质历史上特有的现象,其形成的海底铁锰结核/结壳因富含巨量的有用金属而备受关注。水成型铁锰成矿的胶体成因模型自20世纪90年代中期提出以来已被广泛接受并采用。随着近20年来纳米地球科学的迅速发展,人们意识到纳米颗粒作为胶体的最小部分,能够以其独特的性质显著影响铁锰成矿过程。通过总结已有研究,发现铁氧化物与锰氧化物会以纳米颗粒的形式普遍共存于多种表生地质环境,还证实了水成型铁锰结核/结壳中的主要铁锰矿物(如水羟锰矿和水铁矿)都是纳米颗粒。铁氧化物纳米颗粒对二价锰[Mn(II)]的表面催化氧化可能是水成型铁锰矿物通常在纳米尺度密切共生的原因。此外,在铁锰结壳中还观测到大量在以往研究中被普遍忽视的三价锰[Mn(III)]矿物,其含量在结壳顶部最高,随深度增加逐渐下降,四价锰[Mn(IV)]矿物的含量则呈相反的变化趋势。不同价态锰氧化物纳米颗粒的表面能差异导致Mn(III)矿物在Mn(II)的氧化过程中最先沉淀,并可能在沉淀之后逐渐转化为Mn(IV)矿物。相信随着纳米地球科学与高精度原位实验技术的发展,必将不断深化对海水铁锰循环及海底铁锰成矿的认识。

The extensive mineralization of Cenozoic deep-sea ferromanganese deposits is a unique phenomenon in geological history. Ferromanganese nodules/crusts have attracted considerable attention owing to their enrichment in critical metals. The colloidal genetic model of hydrogenetic Fe-Mn mineralization has been widely accepted and applied since it was first proposed in the mid-1990s. With the rapid development of nanogeoscience over the past two decades, it has become clear that nanoparticles, as the smallest part of colloids, can significantly affect the Fe-Mn mineralization process owing to their unique properties. It has not only been discovered that iron and manganese oxides generally coexist as nanoparticles in various supergene geological environments, but it has also been verified that the primary Fe-Mn minerals, such as vernadite and ferrihydrite, in hydrogenetic ferromanganese nodules/crusts are nanoparticles. Iron oxide nanoparticles can catalyze the surface oxidation of Mn(II), thereby potentially explaining why hydrogenetic Fe-Mn minerals are usually symbiotic even at the nanoscale. In addition, Mn(III) minerals, which have generally been neglected in previous research, have been abundantly observed in ferromanganese crusts. The Mn(III) fraction is highest near the surface of the crust and gradually decreases with increasing depth, whereas the Mn(IV) fraction shows the opposite trend. The surface energy variation among manganese oxide nanoparticles with different valence states induces the initial precipitation of Mn(III) minerals during Mn(II) oxidation, which may eventually be converted to Mn(IV) minerals over geological timescales. Further progress in comprehending the Fe-Mn cycle in seawater and Fe-Mn mineralization on the seafloor through the advancement of nanogeoscience and high-resolution in situ experimental techniques is expected in the near future.

中图分类号: 

图1 自然胶体与纳米颗粒的尺寸域对比(据参考文献[ 5 ]修改)
纳米颗粒是至少1个维度小于100 nm的颗粒物,意味着纳米颗粒位于胶体的子集
Fig. 1 Sizes domains of natural colloids and nanoparticlesmodified after reference 5 ])
Nanoparticles are generally defined as particulate matter with at least one dimension that is less than 100 nm, this definition places them as a sub-set of colloidal particles
图2 水成型铁锰结壳中水羟锰矿纳米颗粒的TEM图像 19
(a)水羟锰矿纳米颗粒低分辨率图像;(b)和(c)水羟锰矿纳米颗粒高分辨率图像,(b)中被红色圆圈圈出的部位为进行EDS能谱分析的区域(见图3)
Fig. 2 TEM images of vernadite nanoparticles within a ferromanganese crust 19
(a) Low magnification image of vernadite nanoparticles; (b) and (c) High-resolution TEM images of vernadite nanoparticles; The region demarcated by the red circle in figure (b) indicates the area where EDS analysis is conducted (see Figure 3)
图3 水成型铁锰结壳中水羟锰矿纳米颗粒特定区域的TEM-EDS能谱 19
(a)水羟锰矿纳米颗粒外部区域;(b)水羟锰矿纳米颗粒内部区域;(c)水羟锰矿纳米颗粒层间区域
Fig. 3 TEM-EDS spectra obtained from specific areas of vernadite nanoparticles within a ferromanganese crust 19
(a) Outer part of vernadite nanoparticles; (b) Inner part of vernadite nanoparticles; (c) Vernadite layers
图4 铁锰种类的pE-pH 31
(a)25 ℃、10 -6 mol/L条件下Fe种类的pE-pH图;(b)25 ℃、10 -6 mol/L条件下Mn种类的pE-pH;白色区域代表Fe或Mn在热力学上应为水相,灰色区域代表Fe或Mn在热力学上应为固相;上部虚线代表水稳定区域的上界,即在该虚线上方,O 2分压大于1.01×10 5 Pa;下部虚线代表水稳定区域的下界,即在该虚线下方,H 2分压大于1.01×10 5 Pa
Fig. 4 pE-pH diagrams of iron and manganese species 31
(a) pE-pH diagrams of Fe species drawn with 10 -6 mol/L Fe at 25 ℃; (b) pE-pH diagrams of Mn species drawn with 10 -6 mol/L Mn at 25 ℃; The white regions show where Fe and Mn are thermodynamically speciated entirely in the aqueous phase,whereas the gray regions indicate thermodynamic speciation in the solid phase;The top dashed line shows the upper boundary of the water stability region, i. e. above this line, the O 2 partial pressure exceeds 1.01×10 5 Pa; The bottom dashed line represents the lower boundary of the water stability region, i. e. below this line, the H 2 partial pressure exceeds 1.01×10 5 Pa
图5 铁锰氧化过程中MnII)和FeII)各流失1个电子到O2 的电子轨道能量图 36
O 2的电子供体轨道与电子受体轨道为同一单电子占据分子轨道,无法同时接受2个电子;Fe(II)的电子供体轨道与O 2的电子受体轨道均为π构型,Mn(II)的电子供体轨道则为σ构型;e g表示二重简并轨道;t 2g表示三重简并轨道;σ与π表示不同的轨道构型;*表示反键轨道。O 2的电子供体轨道与电子受体轨道为同一单电子占据分子轨道,无法同时接受两个电子。Fe(II)的电子供体轨道与O 2的电子受体轨道均为π构型,Mn(II)的电子供体轨道则为σ构型
Fig. 5 Orbital energy diagrams showing the loss of electrons from Mn(II) and Fe(II) to O2 36
The electron donor orbitals and the electron acceptor orbitals for O 2 are the same orbitals as these are singly occupied molecular orbitals, thus O 2 cannot accept two electrons into the same molecular orbital. The electron donor orbitals of Fe(II) have the same symmetry (π) as O 2 whereas Mn(II) has a mismatch(σ); e g represents doubly degenerate orbitals;t 2g represents triply degenerate orbitals; σ and π represent distinct orbital configurations;* represents anti-bonding orbitals. The electron donor orbitals and the electron acceptor orbitals for O 2 are the same orbitals as these are singly occupied molecular orbitals, thus O 2 cannot accept two electrons into the same molecular orbital. The electron donor orbitals of Fe(II) have the same symmetry (π) as O 2 whereas Mn(II) has a mismatch(σ)
图6 MnII)与O2 的内轨电子转移机制 37
D代表电子供体(Donor)即Mn(II),A代表电子受体(Acceptor)即O 2。步骤I:形成络合物;步骤II:络合物内部重组;步骤III:电子转移;步骤IV:络合物解离,生成产物
Fig. 6 Inner-sphere electron transfer mechanism between MnIIand O2 37
D represents the electron donor, namely Mn(II), while A represents the electron acceptor, namely O 2. Step I: formation of encounter complex; Step II: reorganization within complex; Step III: electron transfer; Step IV: breakup of successor complex into product
图7 O2 氧化Fe2+Mn2+ 时分步电子转移的热力学变化 38
显示了pH=7的条件下当O 2从4个独立的Fe 2+和Mn 2+离子中接受4个连续的电子来打破O=O键最终形成水时,Fe 2+和Mn 2+的反应自由能
Fig. 7 Thermodynamics of stepwise oxidation reactions in O2 oxidation of Fe2+ and Mn2+38
The diagram shows a plot of the calculated free energies for these Fe 2+ and Mn 2+ reactions at pH = 7 for each electron transferred as O 2 accepts four successive electrons from four separate Fe 2+ and Mn 2+ ions to break the O=O bond to eventually form water
图8 MnII)在水铁矿纳米颗粒表面的催化氧化途径(据参考文献[ 57 ]修改)
Mn(II)、O 2在矿物表面形成Mn(II)-O 2络合物进行直接电子转移; Mn(II)、O 2与矿物表面的氧化还原对(Fe(II)/Fe(III))形成Mn(II)-Fe(II,III)-O 2络合物进行间接电子转移; Mn(II)、O 2通过矿物导带进行电子转移,不发生直接接触或络合;红色箭头代表电子转移
Fig. 8 Diagram for reaction pathways of MnIIoxidation on ferrihydrite surfacesmodified after reference 57 ])
Mn(II) oxidation by O 2 through direct electron transfer in the Mn(II)-O 2 complexes at the surface; Mn(II) oxidation by O 2 through electron transfer between Mn(II) complex and O 2 complex coupled with Fe(II)/Fe(III) redox pairs at the surface; Mn(II) oxidation by O 2 through electron transfer between Mn(II) complex and O 2 complex via conduction band of ferrihydrite
图9 锰氧化物纳米颗粒在赤铁矿纳米颗粒表面初始成核与外延生长的TEM-EELS图像 60
(a)EELS成像,绿色代表锰氧化物纳米颗粒,橙色代表铁氧化物纳米颗粒;(b)TEM成像,显示线状锰氧化物纳米颗粒以一定角度于铁氧化物纳米颗粒的表面成核;(c)高分辨率TEM成像,显示单个线状锰氧化物纳米颗粒由11个更小的锰氧化物纳米颗粒(以不同颜色区分)外延生长组成
Fig. 9 TEM-EELS diagrams showing the nucleation and epitaxial growth of manganese oxides on hematite nanoparticles 60
(a) The EELS mapping images of Mn oxide nanoparticles (green) and Fe oxide nanoparticles (orange); (b) TEM image shows showing that the Mn oxide nanowires extend from the edge facets of Fe oxide nanoparticles, with a 120° angle between elongated directions of nanowires and edge of Fe oxide nanoparticles;(c) HRTEM image of a nanowire consisting of 11 samller Mn oxide nanoparticles (marked with different colors)
图10 水成型铁锰结壳顶部与底部的Mn氧化态分布 69
Fig. 10 Mn oxidation states for representative sections from the top and bottom of a ferromanganese crust 69
图11 25 ℃10-6 mol/L Mn、氧化还原电位固定为0.5 V条件下的锰氧化物稳定区域 73
Fig. 11 Size-dependent manganese oxide stablilty field atMn=10-6 mol/L and 25 ℃at fixed redox potential E = 0.5 V 73
1 KUHN T, WEGORZEWSKI A, RÜHLEMANN C, et al. Composition, formation, and occurrence of polymetallic nodules [M]// Deep-sea mining. Cham: Springer, 2017: 23-63.
2 HALBACH P E, JAHN A, CHERKASHOV G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources [M]// Deep-sea mining. Cham: Springer, 2017: 65-141.
3 KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5 113-5 132.
4 HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
5 CHRISTIAN P, von der KAMMER F, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology, 2008, 17(5): 326-343.
6 WIGGINTON N S, HAUS K L, HOCHELLA M F. Aquatic environmental nanoparticles [J]. Journal of Environmental Monitoring, 2007, 9(12): 1 306-1 316.
7 HOCHELLA M F, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and earth systems [J]. Science, 2008, 319(5 870): 1 631-1 635.
8 SHARMA V K, FILIP J, ZBORIL R, et al. Natural inorganic nanoparticles—formation, fate, and toxicity in the environment [J].Chemical Society Reviews, 2015, 44(23): 8 410-8 423.
9 GARTMAN A, FINDLAY A J, HANNINGTON M, et al. The role of nanoparticles in mediating element deposition and transport at hydrothermal vents [J]. Geochimica et Cosmochimica Acta, 2019, 261: 113-131.
10 PUTNIS C V, RUIZ-AGUDO E. Nanoparticles formed during mineral-fluid interactions [J]. Chemical Geology, 2021: 586. DOI:10.1016/j.chemgeo.2021.120614 .
11 HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system [J]. Science, 2019, 363(6 434). DOI: 10.1126/science.aau8299 .
12 CARABALLO M A, MICHEL F M, HOCHELLA M F. The rapid expansion of environmental mineralogy in unconventional ways: beyond the accepted definition of a mineral, the latest technology, and using nature as our guide [J]. American Mineralogist, 2015, 100(1): 14-25.
13 HOCHELLA M F. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex [J]. American Mineralogist, 2005, 90(4): 718-724.
14 GARVIE L A J, BURT D M, BUSECK P R. Nanometer-scale complexity, growth, and diagenesis in desert varnish [J]. Geology, 2008, 36(3): 215-218.
15 BARRÓN V, TORRENT J. Iron, Manganese and aluminium oxides and oxyhydroxides[M]// Minerals at the Nanoscale. London: Mineralogical Society of Great Britain and Ireland, 2013: 297-336.
16 TAITEL-GOLDMAN N. Crystallization of Fe and Mn oxides-hydroxides in saline and hypersaline environments and In vitro [M]// Advanced topics in crystallization. London: InTechOpen, 2015: 23-33.
17 MANCEAU A, LANSON M, TAKAHASHI Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule [J]. American Mineralogist, 2014, 99(10): 2 068-2 083.
18 GUAN Y, SUN X M, REN Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea[J]. Ore Geology Reviews, 2017, 89: 206-227.
19 LEE S, XU H F, XU W Q, et al. The structure and crystal chemistry of vernadite in ferromanganese crusts [J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2019, 75(4): 591-598.
20 REN Y Z, GUAN Y, SUN X M, et al. Nano-mineralogy and growth environment of Fe-Mn polymetallic crusts and nodules from the South China Sea[J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1141926 .
21 LIU X Y. Generic mechanism of heterogeneous nucleation and molecular interfacial effects[M]// Advances in crystal growth research. Amsterdam: Elsevier, 2001: 42-61.
22 DRIESSCHE A, KELLERMEIER M, BENNING L G, et al. New perspectives on mineral nucleation and growth: from solution precursors to solid materials [M]. Cham: Springer, 2017.
23 JUN Y S, ZHU Y G, WANG Y, et al. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation[J]. Annual Review of Physical Chemistry, 2022, 73: 453-477.
24 GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisationn [J]. Chemical Society Reviews, 2014, 43(7): 2 348-2 371.
25 GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters [J]. Science, 2008, 322(5 909): 1 819-1 822.
26 POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM [J]. Science, 2009, 323(5 920): 1 455-1 458.
27 DE YOREO J J, GILBERT P U, SOMMERDIJK N A, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments [J]. Science, 2015, 349(6 247). DOI: 10.1126/science.aaa6760 .
28 WEATHERILL J S, MORRIS K, BOTS P, et al. Ferrihydrite formation: the role of Fe13 keggin clusters [J]. Environmental Science & Technology, 2016, 50(17): 9 333-9 342.
29 MIRABELLO G, IANIRO A, BOMANS P H H, et al. Crystallization by particle attachment is a colloidal assembly process [J]. Nature Materials, 2020, 19(4): 391-396.
30 FU Haoyang, SHENG Jie, LING Lan. A new perspective of inorganic crystallization: non-classical nucleation and growth[J]. Chinese Science Bulletin, 2021, 66(33): 4256-4267.
傅浩洋, 盛杰, 凌岚. 无机物结晶新视角: 非经典成核与生长[J]. 科学通报, 2021, 66(33): 4 256-4 267.
31 MARTIN S T. Precipitation and dissolution of iron and manganese oxides [M]// Environmental catalysis. London: Taylor & Francis Group, 2005: 61-78.
32 TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: properties and mechanisms of formation [J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 287-328.
33 BYRNE R H. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios [J]. Geochemical Transactions, 2002, 3. DOI: 10.1039/b109732f .
34 GLASBY G P. Manganese: predominant role of nodules and crusts [M]// Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 371-427.
35 LIU J, CHEN Q Z, YANG Y X, et al. Coupled redox cycling of Fe and Mn in the environment: the complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation [J]. Earth-Science Reviews, 2022, 232. DOI:10.1016/j.earscirev.2022.104105 .
36 LUTHER G W. Manganese(II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron step [J]. Geomicrobiology Journal, 2005, 22(3/4): 195-203.
37 SCHOONEN M A, STRONGIN D R. Catalysis of electron transfer reactions at mineral surfaces [J]. Cheminform, 2006, 37(32). DOI:10.1002/chin.200632248 .
38 MORGAN J J. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48.
39 LUTHER G W. The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions [J]. Aquatic Geochemistry, 2010, 16(3): 395-420.
40 MILLERO F J, SOTOLONGO S, IZAGUIRRE M. The oxidation kinetics of Fe(II) in seawater [J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 793-801.
41 PAULMIER A, RUIZ-PINO D. Oxygen minimum zones (OMZs) in the modern ocean [J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
42 USUI A, NISHI K, SATO H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800~5 500 m[J]. Ore Geology Reviews, 2017, 87: 71-87.
43 USUI A, HINO H, SUZUSHIMA D, et al. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests [J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-60200-5 .
44 SCHIPPERS A, NERETIN L N, LAVIK G, et al. Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea [J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2 241-2 252.
45 SHAW T J, GIESKES J M, JAHNKE R A. Early diagenesis in differing depositional environments: the response of transition metals in pore water [J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1 233-1 246.
46 GOTO K T, SEKINE Y, ITO T, et al. Progressive Ocean oxygenation at ~2.2 Ga inferred from geochemistry and molybdenum isotopes of the Nsuta Mn deposit, Ghana [J]. Chemical Geology, 2021, 567. DOI:10.1016/j.chemgeo.2021.120116 .
47 STUMM W. Catalysis of redox processes by hydrous oxide surfaces[J]. Croatica Chemica Acta, 1997, 70: 71-93.
48 HOCHELLA M F, WHITE A F. Mineral-water interface geochemistry: an overview [J]. Reviews in Mineralogy and Geochemistry, 1990, 23(1): 1-16.
49 MADDEN A S, HOCHELLA M F. A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles [J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 389-398.
50 BEWERS J M, YEATS P A. Oceanic residence times of trace metals [J]. Nature, 1977, 268(5 621): 595-598.
51 DIEM D, STUMM W. Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1 571-1 573.
52 SUNG W, MORGAN J J. Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface [J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2 377-2 383.
53 COUGHLIN R W, MATSUI I. Catalytic oxidation of aqueous Mn(II) [J]. Journal of Catalysis, 1976, 41(1): 108-123.
54 JUNTA J L, HOCHELLA M F. Manganese (II) oxidation at mineral surfaces: a microscopic and spectroscopic study [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4 985-4 999.
55 CHERNYSHOVA I V, PONNURANGAM S, SOMASUNDARAN P. Effect of nanosize on catalytic properties of ferric (hydr)oxides in water: mechanistic insights [J]. Journal of Catalysis, 2011, 282(1): 25-34.
56 WANG X M, LAN S, ZHU M Q, et al. The presence of ferrihydrite promotes abiotic formation of Manganese (oxyhydr)oxides[J]. Soil Science Society of America Journal, 2015, 79(5): 1 297-1 305.
57 LAN S, WANG X M, XIANG Q J, et al. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of Manganese (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2017, 211: 79-96.
58 LUO Y, DING J Y, SHEN Y G, et al. Symbiosis mechanism of iron and Manganese oxides in oxic aqueous systems[J]. Chemical Geology, 2018, 488: 162-170.
59 INOUÉ S, YASUHARA A, AI H, et al. Mn(II) oxidation catalyzed by nanohematite surfaces and manganite/hausmannite core-shell nanowire formation by self-catalytic reaction[J]. Geochimica et Cosmochimica Acta, 2019, 258: 79-96.
60 LIU J, INOUÉ S, ZHU R L, et al. Facet-specific oxidation of Mn(II) and heterogeneous growth of Manganese (oxyhydr)oxides on hematite nanoparticles[J]. Geochimica et Cosmochimica Acta, 2021, 307: 151-167.
61 HU S W, ZHENG L R, ZHANG H Y, et al. Hematite-mediated Mn(II) abiotic oxidation under oxic conditions: pH effect and mineralization[J]. Journal of Colloid and Interface Science, 2023, 636: 267-278.
62 DAVIES S H R, MORGAN J J. Manganese(II) oxidation kinetics on metal oxide surfaces [J]. Journal of Colloid and Interface Science, 1989, 129(1): 63-77.
63 XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4): 543-556.
64 BECKER U, ROSSO K M, HOCHELLA M F. The proximity effect on semiconducting mineral surfaces: a new aspect of mineral surface reactivity and surface complexation theory? [J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2 641-2 649.
65 SHERMAN D M. Electronic structures of Iron(III) and Manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 249-3 255.
66 YIN H, LIU F, FENG X H, et al. Effects of Fe doping on the structures and properties of hexagonal birnessites-comparison with Co and Ni doping[J]. Geochimica et Cosmochimica Acta, 2013, 117: 1-15.
67 LIU C S, ZHU Z K, LI F B, et al. Fe(II)-induced phase transformation of ferrihydrite: the inhibition effects and stabilization of divalent metal cations[J]. Chemical Geology, 2016, 444: 110-119.
68 YIN Hui, KWON K D, LEE J Y, et al. Distinct effects of Al3+ doping on the structure and properties of hexagonal turbostratic birnessite: a comparison with Fe3+ doping [J]. Geochimica et Cosmochimica Acta, 2017, 208: 268-284.
69 SUTHERLAND K M, WANKEL S D, HEIN J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11). DOI:10.1029/2020GC009074 .
70 HEM J D, LIND C J. Nonequilibrium models for predicting forms of precipitated manganese oxides [J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 2 037-2 046.
71 MURRAY J W, DILLARD J G, GIOVANOLI R, et al. Oxidation of Mn(II): initial mineralogy, oxidation state and ageing[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 463-470.
72 NAVROTSKY A, MA C C, LILOVA K, et al. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria[J]. Science, 2010, 330(6 001): 199-201.
73 SUN W H, KITCHAEV D A, KRAMER D, et al. Non-equilibrium crystallization pathways of manganese oxides in aqueous solution[J]. Nature Communications, 2019, 10(1): 1-9.
74 JU Y W, LI X, JU L T, et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource[J]. Gondwana Research, 2022, 110: 370-392.
75 KOSCHINSKY A, HEIN J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182.
76 ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.
周怀阳.深海海底铁锰结核的秘密 [J]. 自然杂志, 2015, 37(6): 397-404.
77 PARK J, JUNG J, KO Y, et al. Reconstruction of the paleo‐ocean environment using mineralogical and geochemical analyses of mixed‐type ferromanganese nodules from the tabletop of Western Pacific Magellan Seamount [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(2). DOI:10.1029/2022GC010768 .
78 JU Yiwen, SUN Yan, WAN Quan, et al. Nanogeology: a revolutionary challenge in geosciences [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 1-20.
琚宜文,孙岩,万泉,等.纳米地质学:地学领域革命性挑战 [J]. 矿物岩石地球化学通报, 2016, 35(1): 1-20.
[1] 汤艳杰,贾建业,谢先德. 铁锰氧化物在污染土壤修复中的作用[J]. 地球科学进展, 2002, 17(4): 557-564.
阅读次数
全文


摘要