1 |
KUHN T, WEGORZEWSKI A, RÜHLEMANN C, et al. Composition, formation, and occurrence of polymetallic nodules [M]// Deep-sea mining. Cham: Springer, 2017: 23-63.
|
2 |
HALBACH P E, JAHN A, CHERKASHOV G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources [M]// Deep-sea mining. Cham: Springer, 2017: 65-141.
|
3 |
KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5 113-5 132.
|
4 |
HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
|
5 |
CHRISTIAN P, von der KAMMER F, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology, 2008, 17(5): 326-343.
|
6 |
WIGGINTON N S, HAUS K L, HOCHELLA M F. Aquatic environmental nanoparticles [J]. Journal of Environmental Monitoring, 2007, 9(12): 1 306-1 316.
|
7 |
HOCHELLA M F, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and earth systems [J]. Science, 2008, 319(5 870): 1 631-1 635.
|
8 |
SHARMA V K, FILIP J, ZBORIL R, et al. Natural inorganic nanoparticles—formation, fate, and toxicity in the environment [J].Chemical Society Reviews, 2015, 44(23): 8 410-8 423.
|
9 |
GARTMAN A, FINDLAY A J, HANNINGTON M, et al. The role of nanoparticles in mediating element deposition and transport at hydrothermal vents [J]. Geochimica et Cosmochimica Acta, 2019, 261: 113-131.
|
10 |
PUTNIS C V, RUIZ-AGUDO E. Nanoparticles formed during mineral-fluid interactions [J]. Chemical Geology, 2021: 586. DOI:10.1016/j.chemgeo.2021.120614 .
|
11 |
HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system [J]. Science, 2019, 363(6 434). DOI: 10.1126/science.aau8299 .
|
12 |
CARABALLO M A, MICHEL F M, HOCHELLA M F. The rapid expansion of environmental mineralogy in unconventional ways: beyond the accepted definition of a mineral, the latest technology, and using nature as our guide [J]. American Mineralogist, 2015, 100(1): 14-25.
|
13 |
HOCHELLA M F. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex [J]. American Mineralogist, 2005, 90(4): 718-724.
|
14 |
GARVIE L A J, BURT D M, BUSECK P R. Nanometer-scale complexity, growth, and diagenesis in desert varnish [J]. Geology, 2008, 36(3): 215-218.
|
15 |
BARRÓN V, TORRENT J. Iron, Manganese and aluminium oxides and oxyhydroxides[M]// Minerals at the Nanoscale. London: Mineralogical Society of Great Britain and Ireland, 2013: 297-336.
|
16 |
TAITEL-GOLDMAN N. Crystallization of Fe and Mn oxides-hydroxides in saline and hypersaline environments and In vitro [M]// Advanced topics in crystallization. London: InTechOpen, 2015: 23-33.
|
17 |
MANCEAU A, LANSON M, TAKAHASHI Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule [J]. American Mineralogist, 2014, 99(10): 2 068-2 083.
|
18 |
GUAN Y, SUN X M, REN Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea[J]. Ore Geology Reviews, 2017, 89: 206-227.
|
19 |
LEE S, XU H F, XU W Q, et al. The structure and crystal chemistry of vernadite in ferromanganese crusts [J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2019, 75(4): 591-598.
|
20 |
REN Y Z, GUAN Y, SUN X M, et al. Nano-mineralogy and growth environment of Fe-Mn polymetallic crusts and nodules from the South China Sea[J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1141926 .
|
21 |
LIU X Y. Generic mechanism of heterogeneous nucleation and molecular interfacial effects[M]// Advances in crystal growth research. Amsterdam: Elsevier, 2001: 42-61.
|
22 |
DRIESSCHE A, KELLERMEIER M, BENNING L G, et al. New perspectives on mineral nucleation and growth: from solution precursors to solid materials [M]. Cham: Springer, 2017.
|
23 |
JUN Y S, ZHU Y G, WANG Y, et al. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation[J]. Annual Review of Physical Chemistry, 2022, 73: 453-477.
|
24 |
GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisationn [J]. Chemical Society Reviews, 2014, 43(7): 2 348-2 371.
|
25 |
GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters [J]. Science, 2008, 322(5 909): 1 819-1 822.
|
26 |
POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM [J]. Science, 2009, 323(5 920): 1 455-1 458.
|
27 |
DE YOREO J J, GILBERT P U, SOMMERDIJK N A, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments [J]. Science, 2015, 349(6 247). DOI: 10.1126/science.aaa6760 .
|
28 |
WEATHERILL J S, MORRIS K, BOTS P, et al. Ferrihydrite formation: the role of Fe13 keggin clusters [J]. Environmental Science & Technology, 2016, 50(17): 9 333-9 342.
|
29 |
MIRABELLO G, IANIRO A, BOMANS P H H, et al. Crystallization by particle attachment is a colloidal assembly process [J]. Nature Materials, 2020, 19(4): 391-396.
|
30 |
FU Haoyang, SHENG Jie, LING Lan. A new perspective of inorganic crystallization: non-classical nucleation and growth[J]. Chinese Science Bulletin, 2021, 66(33): 4256-4267.
|
|
傅浩洋, 盛杰, 凌岚. 无机物结晶新视角: 非经典成核与生长[J]. 科学通报, 2021, 66(33): 4 256-4 267.
|
31 |
MARTIN S T. Precipitation and dissolution of iron and manganese oxides [M]// Environmental catalysis. London: Taylor & Francis Group, 2005: 61-78.
|
32 |
TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: properties and mechanisms of formation [J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 287-328.
|
33 |
BYRNE R H. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios [J]. Geochemical Transactions, 2002, 3. DOI: 10.1039/b109732f .
|
34 |
GLASBY G P. Manganese: predominant role of nodules and crusts [M]// Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 371-427.
|
35 |
LIU J, CHEN Q Z, YANG Y X, et al. Coupled redox cycling of Fe and Mn in the environment: the complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation [J]. Earth-Science Reviews, 2022, 232. DOI:10.1016/j.earscirev.2022.104105 .
|
36 |
LUTHER G W. Manganese(II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron step [J]. Geomicrobiology Journal, 2005, 22(3/4): 195-203.
|
37 |
SCHOONEN M A, STRONGIN D R. Catalysis of electron transfer reactions at mineral surfaces [J]. Cheminform, 2006, 37(32). DOI:10.1002/chin.200632248 .
|
38 |
MORGAN J J. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48.
|
39 |
LUTHER G W. The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions [J]. Aquatic Geochemistry, 2010, 16(3): 395-420.
|
40 |
MILLERO F J, SOTOLONGO S, IZAGUIRRE M. The oxidation kinetics of Fe(II) in seawater [J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 793-801.
|
41 |
PAULMIER A, RUIZ-PINO D. Oxygen minimum zones (OMZs) in the modern ocean [J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
|
42 |
USUI A, NISHI K, SATO H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800~5 500 m[J]. Ore Geology Reviews, 2017, 87: 71-87.
|
43 |
USUI A, HINO H, SUZUSHIMA D, et al. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests [J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-60200-5 .
|
44 |
SCHIPPERS A, NERETIN L N, LAVIK G, et al. Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea [J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2 241-2 252.
|
45 |
SHAW T J, GIESKES J M, JAHNKE R A. Early diagenesis in differing depositional environments: the response of transition metals in pore water [J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1 233-1 246.
|
46 |
GOTO K T, SEKINE Y, ITO T, et al. Progressive Ocean oxygenation at ~2.2 Ga inferred from geochemistry and molybdenum isotopes of the Nsuta Mn deposit, Ghana [J]. Chemical Geology, 2021, 567. DOI:10.1016/j.chemgeo.2021.120116 .
|
47 |
STUMM W. Catalysis of redox processes by hydrous oxide surfaces[J]. Croatica Chemica Acta, 1997, 70: 71-93.
|
48 |
HOCHELLA M F, WHITE A F. Mineral-water interface geochemistry: an overview [J]. Reviews in Mineralogy and Geochemistry, 1990, 23(1): 1-16.
|
49 |
MADDEN A S, HOCHELLA M F. A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles [J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 389-398.
|
50 |
BEWERS J M, YEATS P A. Oceanic residence times of trace metals [J]. Nature, 1977, 268(5 621): 595-598.
|
51 |
DIEM D, STUMM W. Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1 571-1 573.
|
52 |
SUNG W, MORGAN J J. Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface [J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2 377-2 383.
|
53 |
COUGHLIN R W, MATSUI I. Catalytic oxidation of aqueous Mn(II) [J]. Journal of Catalysis, 1976, 41(1): 108-123.
|
54 |
JUNTA J L, HOCHELLA M F. Manganese (II) oxidation at mineral surfaces: a microscopic and spectroscopic study [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4 985-4 999.
|
55 |
CHERNYSHOVA I V, PONNURANGAM S, SOMASUNDARAN P. Effect of nanosize on catalytic properties of ferric (hydr)oxides in water: mechanistic insights [J]. Journal of Catalysis, 2011, 282(1): 25-34.
|
56 |
WANG X M, LAN S, ZHU M Q, et al. The presence of ferrihydrite promotes abiotic formation of Manganese (oxyhydr)oxides[J]. Soil Science Society of America Journal, 2015, 79(5): 1 297-1 305.
|
57 |
LAN S, WANG X M, XIANG Q J, et al. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of Manganese (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2017, 211: 79-96.
|
58 |
LUO Y, DING J Y, SHEN Y G, et al. Symbiosis mechanism of iron and Manganese oxides in oxic aqueous systems[J]. Chemical Geology, 2018, 488: 162-170.
|
59 |
INOUÉ S, YASUHARA A, AI H, et al. Mn(II) oxidation catalyzed by nanohematite surfaces and manganite/hausmannite core-shell nanowire formation by self-catalytic reaction[J]. Geochimica et Cosmochimica Acta, 2019, 258: 79-96.
|
60 |
LIU J, INOUÉ S, ZHU R L, et al. Facet-specific oxidation of Mn(II) and heterogeneous growth of Manganese (oxyhydr)oxides on hematite nanoparticles[J]. Geochimica et Cosmochimica Acta, 2021, 307: 151-167.
|
61 |
HU S W, ZHENG L R, ZHANG H Y, et al. Hematite-mediated Mn(II) abiotic oxidation under oxic conditions: pH effect and mineralization[J]. Journal of Colloid and Interface Science, 2023, 636: 267-278.
|
62 |
DAVIES S H R, MORGAN J J. Manganese(II) oxidation kinetics on metal oxide surfaces [J]. Journal of Colloid and Interface Science, 1989, 129(1): 63-77.
|
63 |
XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4): 543-556.
|
64 |
BECKER U, ROSSO K M, HOCHELLA M F. The proximity effect on semiconducting mineral surfaces: a new aspect of mineral surface reactivity and surface complexation theory? [J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2 641-2 649.
|
65 |
SHERMAN D M. Electronic structures of Iron(III) and Manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 249-3 255.
|
66 |
YIN H, LIU F, FENG X H, et al. Effects of Fe doping on the structures and properties of hexagonal birnessites-comparison with Co and Ni doping[J]. Geochimica et Cosmochimica Acta, 2013, 117: 1-15.
|
67 |
LIU C S, ZHU Z K, LI F B, et al. Fe(II)-induced phase transformation of ferrihydrite: the inhibition effects and stabilization of divalent metal cations[J]. Chemical Geology, 2016, 444: 110-119.
|
68 |
YIN Hui, KWON K D, LEE J Y, et al. Distinct effects of Al3+ doping on the structure and properties of hexagonal turbostratic birnessite: a comparison with Fe3+ doping [J]. Geochimica et Cosmochimica Acta, 2017, 208: 268-284.
|
69 |
SUTHERLAND K M, WANKEL S D, HEIN J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11). DOI:10.1029/2020GC009074 .
|
70 |
HEM J D, LIND C J. Nonequilibrium models for predicting forms of precipitated manganese oxides [J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 2 037-2 046.
|
71 |
MURRAY J W, DILLARD J G, GIOVANOLI R, et al. Oxidation of Mn(II): initial mineralogy, oxidation state and ageing[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 463-470.
|
72 |
NAVROTSKY A, MA C C, LILOVA K, et al. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria[J]. Science, 2010, 330(6 001): 199-201.
|
73 |
SUN W H, KITCHAEV D A, KRAMER D, et al. Non-equilibrium crystallization pathways of manganese oxides in aqueous solution[J]. Nature Communications, 2019, 10(1): 1-9.
|
74 |
JU Y W, LI X, JU L T, et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource[J]. Gondwana Research, 2022, 110: 370-392.
|
75 |
KOSCHINSKY A, HEIN J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182.
|
76 |
ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.
|
|
周怀阳.深海海底铁锰结核的秘密 [J]. 自然杂志, 2015, 37(6): 397-404.
|
77 |
PARK J, JUNG J, KO Y, et al. Reconstruction of the paleo‐ocean environment using mineralogical and geochemical analyses of mixed‐type ferromanganese nodules from the tabletop of Western Pacific Magellan Seamount [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(2). DOI:10.1029/2022GC010768 .
|
78 |
JU Yiwen, SUN Yan, WAN Quan, et al. Nanogeology: a revolutionary challenge in geosciences [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 1-20.
|
|
琚宜文,孙岩,万泉,等.纳米地质学:地学领域革命性挑战 [J]. 矿物岩石地球化学通报, 2016, 35(1): 1-20.
|