地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 557 -564. doi: 10.11867/j.issn.1001-8166.2002.04.0557

综述与评述 上一篇    下一篇

铁锰氧化物在污染土壤修复中的作用
汤艳杰 1,贾建业 1,2,谢先德 1   
  1. 1.中国科学院广州地球化学研究所广东省矿物物理矿物材料重点实验室,广东 广州 510640;2. 广东省科学院广州地理研究所,广东 广州 510070
  • 收稿日期:2001-10-23 修回日期:2002-01-31 出版日期:2002-12-20
  • 通讯作者: 汤艳杰(1973-),男,河南南阳人,博士研究生,主要从事环境矿物学研究.E-mail: tangyj@gig.ac.cn E-mail:tangyj@gig.ac.cn
  • 基金资助:

    广东省科学院2000年度优秀青年科技人才基金项目“热带亚热带环境质量评价的矿物标识体系研究”资助.

THE ENVIRONMENTAL MINERALOGICAL SIGNIFICANCE OF IRON AND MANGANESE OXIDES IN REMEDIATION OF CONTAMINATED SOIL

TANG Yan-jie 1, JIA Jian-yie 1,2, XIE Xian-de 1   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,China;2.Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070,China
  • Received:2001-10-23 Revised:2002-01-31 Online:2002-12-20 Published:2002-08-01

矿物学在环境科学中的应用将是21世纪矿物学研究的一个主要方面。土壤污染作为一个制约人类社会可持续发展的基本问题正受到日益广泛的关注,污染土壤的修复已成为环境科学研究的一个重点。污染土壤的修复技术主要有物理、化学、生物等方法,但是,它们都不同程度地存在着缺陷。众所周知,铁和锰是自然界中少数但常见的变价元素。含有变价元素和带有表面电荷的铁锰氧化物具有良好的表面活性,不仅对有毒有害的无机污染物具有良好的净化功能,而且对土壤中有机污染物具有氧化降解作用。利用这些矿物来修复污染土壤,具有成本低、无二次污染等优点,体现出天然净化作用的特色,展现出广阔的环境矿物学应用前景。

The application of mineralogy in environmental sciences will be a major aspect of mineralogical studies in the 21st century. Soil contamination, as one of fundamental problems restricting the sustainable development of our society, is paid more and more attention. Remediation of contaminated soil has been one of the focuses of the research on environmental sciences. Various methods of remediation of contaminated soil, such as physics remediation, chemical remediation, bioremediation, have some problems to some degree existing in the research and the future task. It may be well known that iron and manganese are few but familiarly variable valence elements. Natural oxides of iron and manganese with surface charges and variable valence elements have favorable surface activities. They can not only decontaminate toxic inorganic pollutant, but also decompose and oxidize organic compound. Natural minerals, on behalf of magnetite, hematite, goethite, manganese dioxide and so on, are being one of significant research objects with relation to the methods using natural minerals to decontaminate pollutants at home and abroad. For example, the adsorption and desorption on the surfaces of iron and manganese oxides and their hydroxides happen to the elements such as Cu, Pb, Zn, Cr, Co, F, As, P and rare earth elements in red soil and other soils, mantle of waste and sediments on the earth's surface. It is of the opinion that the activities are one of important mechanism of the elements' activation, transposition and pollution in epigenetic circumstances. Iron and manganese oxides and hydroxides are ubiquitous in soils. They can interact with hydrogenant phenol compounds. It follows that their oxidative degradation abates poison to fauna and flora. And iron oxides are accelerators to the transformation and degradation of organic materials. Manganese ore has forceful adsorption ability to phenyl hydroxide, which adsorption process goes by second order equation of reaction kinetics, and its isothermal line of adsorption is the type of Langmuir. 
Many findings indicate that the oxides of iron and manganese are carriers of heavy metal ions retained by soils. Whereas, the objects of bygone studies are mostly artificially synthetic minerals, which surface properties have much discrepancy with those of natural minerals, so that it is difficult to apply the results of former studies to natural systems. By consequence, it is more useful to reinforce the study of natural iron and manganese oxides in soils.
With the population explosion and reduce of reclaimable wilderness in temperate zones, the global pivot of cultivation has transferred from temperate zones to tropic and subtropic zones. Forasmuch, it is very necessary to carry on the harness and rehabilitation of contaminated soil in these zones. In tropic and subtropic zones, the contents of iron oxides are comparatively high in yellow soil, laterite and red soil owing to the enrichment process of iron and aluminium. The contents of manganese oxides are lower than those of iron oxides, but the oxidizing abilities of manganese oxides are better than those of iron oxides. As a consequence of this, they are equally important to oxidative degradation of soil pollutants. Accordingly, it is rather impending to strengthen the studies on interaction effects between natural iron and manganese oxides and organic pollutants in soils in tropic and subtropic zones. It is propitious to find way to the studies on making use of natural minerals in soil to harness soil pollutants and enhance the harnessing ability of soil itself.
The methods of remedying contaminated soil by the agency of the environmental properties of the natural minerals are of characteristics of simple and feasible. Meanwhile, the artificial application of natural decontamination to pollution abatement of soil is conformable the order of nature. As the result that it has many advantages such as low cost, plummy effectiveness and no secondary pollution and so on. In this way, the studies of contaminated soil remediation can not only body forth the characteristics of natural decontamination, but also open out a vast range of application prospect for the research of environmental mineralogy.

中图分类号: 

[1] Xu Huifang. Environmental mineral: application of mineralogy to environmental sciences[J]. Geological Journal of China University, 2000,6(2): 233-244.[徐惠芳.环境矿物学:矿物学在环境科学研究中的应用[J].高校地质学报,2000,6(2): 233-244.]
[2] Lu Anhuai. Development of properties of mineralogy from resource to environmental[J]. Geological Journal of China University, 2000,6(2): 245-251.[鲁安怀.矿物学研究从资源属性到环境属性的发展[J].高校地质学报,2000,6(2): 245-251.]
[3] Qian Shuqiang, Liu Zheng. An overview of development in the soil-remediation techniques[J]. Progress in Chemical Engineering, 2000,(4): 10-12.[钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2000,(4): 10-12.]
[4] Roy D, Kommalapati R, Mandaua S S. Soil washing potential of natural surfactant[J]. Environ Sci Techol, 1997,31(3): 670-675.
[5] Gong Zitong, Huang Biao. Studies on potential “chemical time bombs” and their igniting factor in soils[J]. Advance in Earth Sciences, 1998,13(2): 184-191.[龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素的探讨[J].地球科学进展,1998,13(2): 184-191.]
[6] Lin Z, Puls R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environ Geol, 2000,39(7): 753-759.
[7] Gier S, Johns W D. Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy[J]. Applied Clay Sci, 2000,16: 289-299.
[8] Bi Chunjuan, Chen Zhenlou, Zheng Xiangmin, et al. Research progress in geochemical activities and bioavailability of heavy metals in rhizosphere environment[J]. Advance in Earth Sciences, 2001,16(3): 387-393.[毕春娟,陈振楼,郑祥民,等.根际环境重金属地球化学行为及其生物有效性研究进展[J]. 地球科学进展, 2001,16(3): 387-393. ]
[9] Xia Xinghui, Chen Jingsheng. Advances in the study of remediation methods of heavy metal-contaminated soil[J]. Chinese Journal of Environmental Sciences, 1997,18(3):72-76.[夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76.]
[10] Sav H O. Integrated In situ soil remediation technology: the lasagna process[J]. Environ Sci Technol, 1995,29: 2 528-2 534.
[11] Nanda Kumar P B A. Phytoextraction: the use of plant to remove heavy metals from soil[J]. Environ Sci Technol, 1995,29: 1 232-1 238.
[12] David C H, Janick F A, Raina M M. Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant[J]. Environ Sci Technol, 1995,29(9): 2 280-2 285.
[13] Sáina M J, Taboada-Casero M T, Vilarino A. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with complsted urban wastes[J]. Plant and Soil, 1998,205(1): 85-92.
[14] Abalel-Aziz R A, Radwan S M A, Dahdon M S, et al. Reducing the metals toxicity in sludge amended soil using VA mycorrhizae[J]. Egypt J Microbiol, 1997,32(2): 217-234.
[15] He H P, Guo J G, Xie X D, et al. Location and migration of cations in Cu2+-adsorption montmorillonite[J]. Environment International, 2001, 26: 347-352.
[16] Spark K M, Joson B B, Wells J D. Characterizing heavy metal absorption on oxides and oxyhydroxides[J]. Europ J of Soil Sci, 1995,46: 621-631.
[17] Chou S, Huang C, Huang Y H. Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor: kinetic approach[J]. Environ Sci Technol, 2001, 35: 1247-1251.
[18] Daniels B G, Lindsay R, Thornton Q. A review of quantitative structural determination of adsorbates on metal oxides surfaces[J]. Surf Rev Lett, 2001, 8(1&2): 95-120.
[19] Jinadasas K B P N. Adsorption of fluoride on goethite surface implications on dental epidemiology[J]. Environmental Geology, 1993,21: 251-255.
[20] Colombo C, Barrón V, Torrent J. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites[J]. Goechemica et Cosmochemica Acta, 1994, 58: 1 261-1 269.
[21] Zhu Lijun, Fu Pingqiu, Wan Guojiang. Surface chemistry and adsorption mechanism of iron oxide minerals from the laterite developed on the carbonate rock[J]. Acta Scientiae Circumstantiae, 1997,17(2): 174-178.[朱立军,傅平秋,万国江.碳酸盐岩红土中氧化铁矿物表面化学特征及其吸附机理研究[J].环境科学学报,1997,17(2): 174-178.]
[22] Alloway B T. Heavy Metals in Soils[M]. London: Blackie, Academic and Professional,  1995.11-24.
[23] Xu Liying, Xing Guangxi. Role of oxide of Fe and layer aluminosilicates in retention of heavy metal elements in soils[J]. Acta Pedologica Sinica, 1995,32(sup.): 201-209.[徐莉英,邢光熹.铁氧化物和层状硅铝酸盐矿物在土壤吸持重金属离子中的作用[J].土壤学报,1995,32(增刊): 201-209.]
[24] Lin Yusuo. Study on copper sorption by three ferric oxides[J]. Acta Pedologica Sinica, 1996, 33(1): 111-112.[林玉锁. 三种氧化铁样品吸持铜离子性能的研究[J]. 土壤学报, 1996, 33(1): 111-112.]
[25] Kooner Z S. Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous system[J]. Environment Geol, 1993,21: 242-250.
[26] Coston J A, Fuller C C, Davis J A. Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand[J]. Geochemica Cosmochemica Acta, 1995,59: 3 535-3 547.
[27] Turner A, Olsen Y S. Chemical versus enzymatic digestion of contaminated estuarine sediments: relative importance of iron and manganese oxides in controlling trace metal bioavailability[J]. Estuarine, Coastal Shelf Sci, 2000,51(6): 717-728.
[28] Lu Yahai, Huang Changyong, Yuan Keneng, et al. Specific adsorption of heavy metal ions on latosol and its minerals[J]. Acta Pedologica Sinica, 1995, 32(4): 370-376.[陆雅海,黄昌勇,袁可能,等. 砖红壤及其矿物表面对重金属离子的专性吸附研究[J]. 土壤学报, 1995, 32(4): 370-376.]
[29] Ankomah A B. Magnesium and pH effect on zinc sorption by goethite[J]. Soil Science, 1992,154: 206-213.
[30] Zhou Daihua, Li Xueyuan, Xu Fenglin. Effect of electrolytical density on iron and aluminium oxides' surface desorption of heavy metal ions and its cause[J]. Chinese Science Bulletin, 1995,40(22): 2 088-2 090.[周代华,李学垣,徐凤琳.电解质浓度对铁铝氧化物表面解吸重金属离子的影响及原因[J].科学通报,1995,40(22): 2 088-2 090.]
[31] Zhou Daihua, Li Xueyuan, Xu Fenglin. Some experimental problems related to distinguishing specific adsorption from non-specific adsorption of heavy metal on the surface of oxides[J]. Acta Pedologica Sinica, 1997, 34(3): 348-351.[周代华,李学垣,徐凤琳.重金属在氧化物表面的吸附形态[J].土壤学报,1997,34(3): 348-351.]
[32] Wei Junfeng, Wu Daqing. Surface ionization and surface complexation models at mineral/water interface[J]. Advance in Earth Sciences, 2000,15(1): 90-96.[魏俊峰,吴大清.矿物—水界面的表面络合反应模式[J].地球科学进展,2000,15(1): 90-96.]
[33] Felmy A R, Rustad J R. Molecular statics calculations of proton binding to geothite surfaces: thermodynamic modeling of the surface charging and protonation of goethite in aqueous solution[J]. Geochemica Cosmochemica Acta, 1998,62: 25-31.
[34] Eggleslon C M, Hug S, Stumm W, et al. Surface complexation of sulfate by hematitie surfaces: FTIR and STM observation[J]. Geochim Cosmochim Acta, 1998,62: 585-593.
[35] Hochella M R Jr, Eggleslon C M, Elings V B, et al. Mineralogy in two dimensions: scanning tunneling microscopy of semiconducting minerals with implications for geochemical reactivity[J]. Amrican Mineral, 1989,74: 1 233-1 246.
[36] Sahai N, Sverjensky D A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data[J]. Geochemica Cosmochemica Acta, 1997,61(14):2 801-2 826.
[37] Sverjensky D A, Sahai N. Theoretical prediction of single-site enthalpies of surface proton for oxides and silicates in water[J]. Geochemica Cosmochemica Acta, 1998,62(14): 3 703-3 716.
[38] Wang Feiyue, Chen Jingsheng. Preliminary research on surface properties of river surface sediment in eastern China[J]. Acta Scientiae Circumstantiae, 2000,20(6): 682-687.[王飞越,陈静生.中国东部河流沉积物样品表面形状的初步研究[J].环境科学学报,2000,20(6): 682-687.]
[39] Kile D E, Chiou C T, Zhou H, et al. Partition of nonpolar organic pollutants from water to soil and sediment organic matters[J]. Environ Sci Technol, 1995,29: 1 401-1 406. 
[40] Sheng G, Xu S, Boyd S A. Mechanism(s) controlling sorption of natural organic contaminants surfactant derived and natural organic matter[J]. Environ Sci Technol, 1996, 30: 1 553-1 557.
[41] Luo Xiaojun, Yang Weidong, Dang Zhi. Remediation of organic contaminated soil and progress on research[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000,19(2): 130-135.[罗孝俊,杨卫东,党志.有机物污染的土壤治理方法及研究进展[J].矿物岩石地球化学通报,2000,19(2): 130-135.]
[42] Sun Shenglong, Long Zhenyong, Cai Baofeng. The mechanism(s) of nometallic mineral remedying environments[J]. Advance in Earth Sciences, 1999,14(5): 475-481.[孙胜龙,龙振永,蔡保丰.非金属矿物修复环境机理研究现状[J].地球科学进展,1999,14(5): 475-481.]
[43] Fall E W, Pickens W E. In-situ hydrocarbon extraction. A case study done by converse Environmental consultants California[J]. Environment Science Technology, 1988,22(3): 349.
[44] Kommalapati R, Valsaraj K T. Aqueous solubility enhancement and desorption of hexacholorobenze from soil using a plant-based surfactant[J]. Environment Science Technology, 1997,31(3): 670-675.
[45] Sahle-Demessie E, Meckes Markc, Richardson T L. Remediating pesticide contaminated soil using solvent extraction[J]. Environment Progress, 1996,15(4): 293-300.
[46] Gupta G. Biodegradation of phenol with poultry litter microorganisms[J]. J Environ Sci Health, 1998, A33 (1): 83-87.
[47] Faduullon S. Degradation of atrazine in soil by streptomyces[J]. Jpurnal of Environment Science Health, 1998, B33 (1): 37-49.
[48] Tiehm Michael, Stieber Peter. Surfactant enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil[J]. Environment Science Technology, 1997,31(9): 2 570-2 576.
[49] Burken J G, Schnoor J L. Phytore mediation: Plant uptake of atrazine and role of root exudates[J]. Journal of Environment Engineering, 1996, 123(11): 958-963.
[50] Hering J G, Stumn W. Oxidation and reduction dissolution of minerals[A]. In: Mineral-Water Interface Geochemistry[C]. In: Hochella Jr M F, White A F, eds. Review in Mineralogy, Washington, D C: Mineralogical Society of America, 1990. 427-466.
[51] Xie Xiande. Advice on the research of environmental mineralogy in southern China[A]. In: Zhao Zhenhua, Geng Ansong, Min Yushun, et al eds. Symposia of Environmental Pollution, Environmental Protection and Comprehensive Utilization of Environmental Resource[C]. Guangzhou: Southern China University of Technology, 1996. 4.[谢先德.加强华南地区环境矿物学研究之我见[A].见:赵振华,耿安松,闵育顺,等主编.广东省环境污染·环境保护·环境资源综合利用学术研讨会论文集[C]. 广州:华南理工大学出版社,1996.4.]
[52] Vasudevan D, Dorley P, Zhuang X. Adsorption of hydroxy pyridines and quinolines at the metal oxide-water interface: role of tautomeric equilibrium[J]. Environment Science Technology, 2001, 35: 2 006-2 013.
[53] Xie X D. Mineralogy—A central discipline of geological sciences[J]. Journal of Mineralogical Society of Japan, 1997, 26(3): 127-128.
[54] Fredrickson J K, Zachara J M, Kennedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium[J]. Geochemica et Cosmochemica Acta, 1998, 62: 3 239-3 257.
[55] Stone A T, Morgan J J. Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics: 2. Survey of the reactivity of organics[J]. Environ Sci Technol, 1984,18: 617-624.
[56] Stone A T. Reductive dissolution of manganese(Ⅲ/Ⅳ) oxides by substituted phenols[J]. Environ Sci Technol, 1987,21: 979-989.
[57] Evanko C R, Dzombak D A. Influence of structural features on sorption of NOM-analogue acids to goethite[J]. Environ Sci Technol, 1998, 32: 2 846-2 855.
[58] Maurice P A, Hochella Jr M F, Parks G A, et al. Evolution of hematite surface microtopography upon dissolution by simple organic acids[J]. Clays and Clay Minerals, 1995, 43: 29-38.
[59] Lu Anhai, Lu Xiaoying, Ren Ziping, et al. New advances in environmental mineralogy of natural oxides and hydroxides of iron and manganese[J]. Earch Science Frontiers, 2000,7(2): 473-483.[鲁安怀,卢晓英,任子平,等.天然铁锰氧化物及氢氧化物环境矿物学研究[J].地学前缘, 2000,7(2): 473-483.]
[60] Xu Renkou, Liu Zhiguang. Oxidative degradation of phenolic compounds by manganese oxides in soils[J]. Acta Pedologica Sinica, 1995,32: 179-185.[徐仁扣,刘志光.土壤中的氧化锰对酚类化合物的氧化降解作用[J].土壤学报, 1995,32: 179-185.]
[61] Zheng Hong, Tang Hongxiao. Adsorption and degradation of phenol on natural manganese ore surfaces[J]. Acta Scientiae Circumstantiae, 1999,19(6): 619-624.[郑红,汤鸿霄.天然矿物锰矿砂对苯酚的界面吸附与降解研究[J].环境科学学报, 1999,19(6): 619-624.]
[62] Koretsky C. The significance of surface complexation reactions in hydrological systems: a geochemist's perspective[J]. J of Hydrology, 2000, (230): 127-171.
[63] Liu C X, Kota S, Zachara J M, et al. Kinetic analysis of the bacterial reduction of goethite[J]. Environ Sci Technol, 2001, 35: 2 482-2 490.
[64] Park G A. Surface energy and adsorption at mineral-water interface: An introduction[A]. In: Hochella Jr M F, White A F, eds. Mineral-water Interface Geochemistry, Reviews in Mineralogy V.23[C]. Washington D C: MSA, 1990. 133-175.
[65] Ding Zhenhua. The geochemical activities and bioavailability of particulate minerals[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1998,17(3): 263-268.[丁振华. 微粒矿物的地球化学活性与生物活性[J]. 矿物岩石地球化学通报,1998,17(3): 263-268.]
[66] Kukkdapu R K, Zachara J M, Smith S C, et al. Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments[J]. Geochemica et Cosmochemica Acta, 2001, 65: 2 913-2 924.
[67] Zachara J M, Fredrickson J K, Li S-M, et al. Bacterial reduction of crystalline Fe(Ⅲ) oxides in single phase suspensions and subsurface materials[J]. America Minerals, 1998, 83: 1 426-1 443.
[68] The Office of Geoscience Department, Chinese Academy of Science. Advice on the sustainable development of agriculture and construction of ecologic environment in highland and rough country[J]. Advance in Earth Sciences,1995,10(5): 413-416.[中国科学院地学部办公室. 关于南方丘陵山地农业持续发展和生态环境建设的建议[J]. 地球科学进展, 1995,10(5): 413-416.]
[69] Mai Bixian, Lin Zheng, Zhang Gan, et al. The pollution situation and risk assessment of toxic organic compounds in sediments from Pearl River Delta[J]. Research of Environmental Sciences, 2001, 14(1): 19-23. [麦碧娴,林峥,张干,等. 珠江三角洲沉积物中毒害有机物的污染现状及评价[J]. 环境科学研究,2001, 14(1): 19-23.]

[1] 杨忠芳,陈岳龙,汪明启,奚小环,肖桂义,高延光. 地球化学填图的国际研究现状及建议[J]. 地球科学进展, 2002, 17(6): 826-832.
[2] 韦朝阳,陈同斌. 重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6): 833-839.
[3] 朱立军,傅平秋,万国江. 环境矿物学[J]. 地球科学进展, 1996, 11(5): 513-516.
阅读次数
全文


摘要