地球科学进展 ›› 2006, Vol. 21 ›› Issue (9): 931 -937. doi: 10.11867/j.issn.1001-8166.2006.09.0931

综述与评述 上一篇    下一篇

粘土矿物保存海洋沉积有机质研究进展及其碳循环意义
卢龙飞,蔡进功,包于进,李从先,杨守业,范代读   
  1. 同济大学海洋与地球科学学院,海洋地质国家重点实验室,上海 200092
  • 收稿日期:2005-12-20 修回日期:2006-06-26 出版日期:2006-09-15
  • 通讯作者: 卢龙飞 E-mail:llf779712@163.com
  • 基金资助:

    国家自然科学基金资助项目“长江三角洲晚新生代锆石精细年代学对长江流域演化的示踪”(编号: 40576030)资助.

Summary of Processes and Significance of Clay Minerals in Marine Sedimentary Organic Matter Preservation and in Global Carbon Cycle

Lu Longfei,Cai Jingong,Bao Yujin,Li Congxian,Yang Shouye,Fan Daidu   

  1. State Key Laboratory of Marine Geology, School of Ocean and Earth Science,Tongji University, Shanghai 200092,China
  • Received:2005-12-20 Revised:2006-06-26 Online:2006-09-15 Published:2006-09-15

海洋沉积物吸附有机质的量和有机质循环周期与粘土矿物类型和吸附方式密切相关,并在全球碳循环中扮演着不同的角色。粘土吸附有机质有物理吸附和化学吸附之分,前者主要存在于粘土的微孔隙中,参与年、十年或百年尺度的循环;后者主要存在于粘土矿物层间和外表面,稳定性较好,有机质易于保存,可参与百万年或更长时间的循环,这种不同时间尺度内的碳循环,将会改写海洋沉积物有机碳“源”、“汇”的关系。不同类型粘土矿物的性质存在差异,决定了吸附有机质量的多寡,蒙脱石的吸附量远大于伊利石的吸附量,这可能是造成全球不同海域中有机碳“源”、“汇”变化的原因。海洋沉积物处于水圈、生物圈和岩石圈的交汇地带,有机碳的差异和变化,都会对全球碳循环及气候变化产生重要的影响。

In the past decade, a series of progresses have been achieved in interaction between marine sedimentary organic matter and clay minerals. Research advances are summarized in the preservation of marine sediment organic matter by clay minerals adsorption, and its significance in global carbon cycle is discussed thereafter. Adsorption of organic matter to clay minerals occurs everywhere in nature. Organic matter can be adsorbed not only by small intercrystalline mesopores with van der waals force and chemical bonds, but also by interlayer spaces with surface bondage. Adsorption ability of clay minerals is related to types and structures, component and characteristic of organic matter, as well as physicochemistry condition of agential . It was suggested that clay minerals play an important role in protecting marine sedimentary organic matter by adsorption. Sedimentary and buried organic matter can be effectively protected from enzymes by decreasing mesopores of clay minerals after absorption of organic matter. Being a tie between activity carbon reservoir and permanent carbon reservoir, clay minerals in marine sediments translate carbon of atmosphere and ocean reservoir with rapid cycle into lithosphere reservoir via adsorbing organic matter, leading to missing carbon sink. Thus, clay minerals control function of carbon source and sink of oceans and have great influence on global carbon cycle and climate change.

中图分类号: 

[1] Battle M, Bender M, Sowers T, et al. Atmospheric gas concentrations over the past century measured in air from firn at the South pole[J]. Nature,1996, 383: 231-235.

[2] Caspersen J P, Pacala S W, Jenkins J C, et al. Contributions of land-use history to carbon accumulation in US forests[J]. Science,2000, 290:1 148-1 151.

[3] Anderson L G, Olsson K, Chierici M. A carbon budget for the Arctic Ocean[J]. Global Biogeochemical Cycle,1998, 12:455-465.

[4] Akinremi O O, Mcginn S M, McLean H D J. Effects of soil temperature and moisture on soil respiration in barley and fallow plots[J]. Canadian Journal of Soil Science, 1999, 79:5-132.

[5] Pedersen T F, Calvert S E, Anoxic versus productivity: What controls the mormation of organic rich sediments and sedimentary rocks?[J]. American Association of Petroleum Geologists Bulletin,1990,74:454-466.

[6] Pelet R. A model of organic sedimentation on present day continental margin[J]. Marine Petroleum Source Rocks,1987, 26: 167-180.

[7] Stein R. Organic carbon and sedimentation rate. Further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic ocean[J]. Marine Geology, 1986, 72: 199-209.

[8] Demaison G, Moore G T. Anoxic environments and oil source bed genisis[J]. American Association of Petroleum Geologists Bulletin, 1980, 64: 1 179-1 209.

[9] Suess E. Particulate organic carbon flux in the ocean [J]. Nature, 1980, 288:260-263.

[10] Weiler R R, Mills A A. Surface properties and pore structure of marine sediments[J]. Deep-Sea Research, 1965, 12: 511-529.

[11] Suess E. Interaction of organic compounds with calcium carbonate-. Organo-carbonate association in Recent sediments[J]. Geochimica et Cosmochimca Acta, 1973, 37:2 435-2 447.

[12] Tanoue E, Handa N. Differential sorption of organic matter by various sized sediment particules in recent sediment from the Bering Sea[J]. Journal of the Oceanographic Society of Japan, 1979, 35: 199-208.

[13] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta,1994, 58: 1 271-1 284.

[14] Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994, 114: 347-363.

[15] Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT -fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58: 879-894.

[16] Bergamaschi B A, Tsamakis E, Keil R G, et al. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 247-1 260.

[17] Keil R G, Hedges J I. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments[J]. Chemical Geology, 1993, 107: 385-388.

[18] Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49: 81-115.

[19] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry,1997,27: 319-361.

[20] Waveren I V, Visscher H. Analysis of composition and selective preservation of organic matter in surficial deep-sea sediments from a high-productivity area(Banda sea, Indonesia) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 112: 85-111.

[21] Tyson R V. The genesis and palynofacies characteristics of marine petroleum source rocks[C]Brooks J, Fleet A J, eds. Marine Petroleum Source Rocks. Geological Society's Special Publications,1987,26: 47-67.

[22] Pedersen T F. Sedimentary organic matter preservation: An assessment and speculative synthesis-A comment[J]. Marine Chemistry, 1995,49:117-119.

[23] Pedersen T F, Calvert S E. Anoxia versus productivity: What controls the formation of organic rich sediments and sedimentary rocks? [J]. American Association of Petroleum Geologists Bulletin, 1990,74:454-466.

[24] Caplan M L, Bustin R M. Palaeoceanographic controls on chemical characteristics of organic-rich Exshaw mudrocks: Role of enhanced primary production[J]. Organic Geochemistry, 1999, 30: 161-188.

[25] Keil R G, Montlucon D B, Prahl F G, et al. Sorptive preservationof labile organic matter in marine sediments[J]. Nature, 1994, 370: 549-552.

[26] Henrichs S M. Sedimentary organic matter preservation: An assessment and speculative synthesis-A Comment[J]. Marine Chemistry, 1995, 49: 127-136.

[27] Mayer L M. Sedimentary organic matter preservation: An assessment and speculative synthesis-A Comment[J]. Marine Chemistry, 1995, 49: 123-126.

[28] Satterberg J, Arnarson T S, Lessard E J. Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite and kaolinite in seawater[J]. Marine Chemistry, 2003,81: 11-18.

[29] Ransom B, Kim D, Kastner M, et al. Organic matter preservation on continental slops: Importance of mineralogy and surface area[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 329-1 345.

[30] Mayer L M. Extent of coverage of mineral surfaces by organic matter in marine sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63:207-215.

[31] Anandarajah A, Dawn L. Numerical simulation of the microstructure and compression behavior of Eckernforde Bay sediments[J]. Marine Geology,2002, 182: 3-27.

[32] Ratner B D, Castner D G. Electron spectroscopy for chemical analysis[C]Vickerman J C, ed. Surface Analysis-The Principal Techniques. New York: Join Wiley, 1998:43-98.

[33] Smith G C. Compositional analysis by auger electron and X-ray photoelectron spectroscopy[C]Riviere J C, Myhra S, eds. Handbook of Surface and Interface Analysis. New York: Marcel Dekker,1998:159-208.

[34]  Brandes J A, Lee C, Wakeham S, et al. Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray adsorption near edge structure spectroscopy[J]. Marine Chemistry, 2004, 92: 107-121.

[35] Furucawa Y. Energy-filtering Transmission Electron Microscope(EFTEM) and Electron Energy-loss Spectroscopy(EELS) Investigation of clay-organic matter aggregates in aquatic sediments[J]. Organic Geochemistry,2000,31:735-744.

[36] Ransom B, Bennett R H , Baerwald R, et al. TEM study of in Situ organic matter on continental margins: Occurrence and the “Monolayer” Hypothesis[J]. Marine Geology, 1997, 138: 1-9.

[37] Pichevin L, Bertrand P, Boussafir M. Organic matter accumulation and preservation controls in a deep sea modern environment: An example from Namibian slope sediments[J]. Organic Geochemistry, 2004, 35: 543-559.

[38] Kennedy M J , Pevear D R, Hill R H. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295: 657-660.

[39] Wang Xingxin,Zhou Shuxin. Significance of organic-clay complexes chemistry in oil-gas creation[J]. Geology Geochemistry,1991,19(5):3-8.[王行信,周书欣.有机粘土化学在油气生成研究中的意义[J].地质地球化学,1991, 19(5):3-8.]

[40] Schulten H R, Leinweber P, Theng B K G. Characterization of organic matter in an interlayer clay-organic complexe from soil by pyrolysis methylation-mass spectrometry[J]. Geoderma, 1996, 69:105-118.

[41] Cai Jingong. Organo-clay Complexes in Muddy Sediments and Mudstone[M]. Beijing:Science Press, 2004:15-175.[蔡进功.泥质沉积物和泥岩中有机粘土复合体[M].北京:科学出版社,2004:15-175.]

[42] Salmon V, Derenne S, Lallier-Verges E, et al. Protection of organic matter by mineral matrix in a cenomanian black shale[J]. Organic Geochemistry,2000,31: 463-474.

[43] Collins M J, Bishop A N, Farrimond P. Sorption by mineral surfaces: Rebirth of the classical condensation pathway for kerogen formation[J]. Geochimica et Cosmochimica Acta,1995,59:2 387-2 391.

[44] Zhao Qiyuan. Marine Geochemistry[M]. Beijing: Geology Press, 1989.[赵其渊.海洋地球化学[M].北京:地质出版社,1989.]

[45] Duan Yi,Cui Mingzhong,Luo Binjie,et al. Organic Geochemical Studies of sink particulate material in china sea area-II.Gechemical significance of compositional features of ketone,aldehyde and alcohol compounds[J]. Chinese Science Bulletin, 1997, 42(22):1 894-1 898.[段毅,崔明中,罗斌杰,.我国海洋沉降颗粒物质的有机地球化学研究I-酮、醛和醇脂类化合物组成特征的地球化学意义[J].科学通报,1997,42(22):1 894-1 898.]

[46] Verdugo P, Alldredge A L. The oceanic gel phase: A bridge in the DOM-POM continuum[J]. Marine Chemistry, 2004, 92: 67-85.

[47] Lei Kun, Yang Zuosheng, Guo Zhigang.Sedimentation with Aggregation of suspended Sediment in a mud area of the north east China sea[J]. Oceanologia et Limnologia Sinica, 2001, 32(3):288-295. [雷坤,杨作升,郭志刚.东海陆架北部泥质区悬浮体的絮凝沉积作用[J].海洋与湖沼, 2001, 32(3):288-295.]

[48] Weiss.Organic derivatives of clay minerals,zeolites and related minerals[C]Organic Geochemistry, Methods and Results. New York, 1969: 739-775.

[49] Ruehrwein R A, Ward D W. Mechanism of clay aggregation by polyelectrolytes[J]. Soil Science,1952,73:484-492.

[51] Schult S, Mangelseorf K, Rullkotter J. Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry[J]. Organic Geochemistry, 2000,31:1 005-1 022.

[52] Zhao Xingyuan,Zhang Youyu. Clay Mimeral and Analysis of Clay Mimeral[M]. Beijing: Ocean Press, 1990:37-56.[赵杏媛,张有喻.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990:37-56.]

[53] Bock M J, Mayer L M. Mesodensity organo-clay associations in a near-shore sediment[J]. Marine Geology, 2000,163: 65-75.

[54] Arnarson T S, Keil R G. Mechanisms of porewater organic matter adsorption to montmorillonite[J]. Marine Chemistry,2000,71: 309-320.

[54] Yariv S, Cross H. Organo Clay Complexes and Interactions[M]. New York: Dekker, 2001:39-111.

[55] Xiaojuan F, Andre J, Simpson, et al. Chemistry and mineralogical controls on humic acid sorption to clay mineral surface[J]. Organic Geochemistry, 2005, 36:1 553-1 566.

[56] Yaron-Marcovich D, Nir S, Chen Y. Fluridone adsorption-desorption on organo-clay [J]. Applied Clay Science, 2004, 24: 167-175.

[57] Arnarson T S, Keil R G. Mechanisms of porewater organic matter adsorption to montmorillonite[J]. Marine Chemistry, 2000, 71:309-320.

[58] Xu Jianmin, Hou Huizhen, Yuan Keneng. Studies on organo-mineral complexes in soil : Sodium sulphat as extract to separate calcium-bound organo-mineral complexes in soil[J]. Acta Pedologica Sinica,1998,25: 468-474. [徐建民,侯惠珍,袁可能.土壤有机矿质复合体研究:分离钙键有机矿质复合体的抽提剂——硫酸钠[J].土壤学报,1998,25:468-474.]

[59] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997,27:319-361.

[60] Scharpenseel H W, Ronzani C, Pietig F. Compartive age determination of different humic matter fractions: Isotopes and Radiation in soil organic matter studies[C]International Atomic Energy Agency, Vienna, 1968:67-73.

[61] Campbell C A, Paul E A, Rennie D A, et al. Factors affecting the accuracy of the carbondating method in soil humus studies[J]. Soil Science, 1967, 104:81-85.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[6] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[7] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[8] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[12] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[13] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[14] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
[15] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
阅读次数
全文


摘要