地球科学进展 ›› 2005, Vol. 20 ›› Issue (10): 1106 -1115. doi: 10.11867/j.issn.1001-8166.2005.10.1106

综述与评述 上一篇    下一篇

海洋碳循环模式的研究进展
徐永福,浦一芬,赵 亮   
  1. LAPC,中国科学院大气物理研究所,北京 100029
  • 收稿日期:2003-10-14 修回日期:2005-07-06 出版日期:2005-10-25
  • 通讯作者: 徐永福
  • 基金资助:

    中国科学院知识创新工程重大项目“中国陆地和近海生态系统碳收支研究”(编号:KZCX1-SW-01-16);中国科学院“引进国外杰出人才”计划项目“全球环境变化—碳循环研究”资助

ADVANCES IN THE STUDIES OF OCEAN CARBON-CYCLE MODEL

XU Yong-fu; PU Yi-fen; ZHAO Liang   

  1. LAPC,Institute of Atmospheric Physics, Chinese Academy Sciences, Beijing 100029,China
  • Received:2003-10-14 Revised:2005-07-06 Online:2005-10-25 Published:2005-10-25

从最简单的三箱模式开始简要回顾了海洋碳循环模式的发展历史,讨论了不同发展时期各种模式的特点,并指出了海洋吸收大气CO2的能力。近年来全球海洋环流碳循环模式经常使用简单生化过程,而在过程模式和一维模式中较详尽探讨生态系统在海洋碳循环的作用。最新的全球环流碳循模式估计海洋在20世纪80年代每年吸收大气CO2为1.5~2.2 GtC。还讨论了模拟海洋碳循环的现状和存在的问题。使用含显式生态系统的碳循环模式是研究CO2生物地球循环及其对全球变化响应的发展趋势。

This paper briefly reviews the history of development of ocean carbon-cycle models from the beginning of the simplest three-box model,discusses the features of various models at different times,and points out the ability of oceanic uptake of atmospheric CO2. In recent years,the global oceancirculation model of carbon cycle often uses a simple biogeochemical model,while in the process-based model and one-dimensional model the role of ecosystem in the ocean carbon cycle is explored in relative detail. In 1995, the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) was initiated by IGBP/GAIM. Two phases have been completed. In the second phase, 13 modeling groups participated in the project. Although OCMIP is now in its third phase, some papers from the first or second phase are still in preparation. The newest global oceancirculation models estimate an annual mean oceanic uptake of 1.5-2.2 GtC of anthropogenic CO2 for the 1980s. In spite of many achievements, which have revealed the basic features of oceanic uptake and distributions of atmospheric CO2, many challenges still remain that require further research, which is discussed. One of serious issues is the consistency of physical fields, which can be assessed through examination of anthropogenic tracers. The parameterization of air-sea exchange of CO2 still needs to be further studied. The use of the carbon cycle model with an explicit ecosystem is a developing trend in the study of biogeochemical cycle of carbon dioxide and its response to global change.

中图分类号: 

[1]Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis [M]. Cambridge, UK: Cambridge University Press, 2001.
[2]Ye Duzheng, Fu Congbin, Dong Wenjie. Progresses and future trends of global change sciences [J]. Advances in Earth Science, 2002,17(4): 467-469. [叶笃正,符淙斌,董文杰. 全球变化科学进展与未来趋势[J]. 地球科学进展, 2002,17(4): 467-469.]
[3]Bolin B E, Degens T, Duvigneand P, et al. The global biogeochemical carbon cycle [A]. In: Bolin B, et al, eds. The Global Carbon Cycle, SCOPE 13 [C]. Chichester: John Wiley & Sons, 1979.1-56.
[4]Liss P S, Crane A J. Man-Made Carbon Dioxide and Climatic Change: A Review of Scientific Problems [M]. Norwich: Geobook, 1983.
[5]Sundquist E T. Geological perspectives of carbon dioxide and the carbon cycle [A]. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variation Archaean to Present[C]. Washington DC: American Geophysical Union, 1985.5-59.
[6]Bolin B. How much CO2 remain in the atmosphere? [A]. In: Bolin B, Doos B R, Japer J, et al, eds. The Greenhouse Effect, Climatic Change, and Ecosystem, SCOPE 29 [C]. Chichester: John Wiley & Sons, 1986.93-155.
[7]Trabalka J R, Reichle D E, eds. The Changing Carbon Cycle: A Global Analysis [M]. New York: Springer-Verlag, 1986.
[8]Xu Yongfu. On the study of the biogeochemical cycle of carbon dioxide[J]. Advances in Earth Science, 1995,10(4): 367-372. [徐永福.二氧化碳生物地球化学循环研究的进展[J].地球科学进展,1995, 10(4):367-372.]
[9]Shen Chengde, Yi Weixi, Liu Tungsheng. CO2 global cycle and its isotopic tracing investigation [J]. Quaternary Sciences,1995, 15(1): 53-62. [沈承德,易惟熙,刘东生. CO2全球循环及其同位素示踪研究[J].第四纪研究,1995, 15(1):53-62.]
[10]Yuan Daoxian. Progress in the study on karst processes and carbon cycle [J]. Advances in Earth Science,1999, 14(5): 425-432. [袁道先.岩溶过程和碳循环 [J]. 地球科学进展,1999, 14(5): 425-432.]
[11]Wang Kaixiong, Yao Ming, Xu Lijun. A focus topic of global change study:Carbon cycle [J].Journal of Zhejiang University (Agriculture & Life Sciences),2001, 27(5): 473-478. [王凯雄,姚铭,许利君.全球变化研究热点——碳循环[J].浙江大学学报(农业与生命科学版),2001, 27(5):473-478.]
[12]Yan Guoan, Liu Yongding. Aquatic ecosystems: Carbon cycle and as atmospheric CO2 sink [J]. Acta Ecologica Sinica,2001, 21(5): 827-833. [严国安,刘永定.水生生态系统的碳循环及其对大气CO2的汇[J].生态学报,2001, 21(5):827-833.]
[13]Zhang Yuanhui, Wang Weiqiang, Chen Liqi. Advances in studies of oceanic carbon dioxide[J]. Advances in Earth Science, 2000, 15(5): 559-564. [张远辉,王伟强,陈立奇.海洋二氧化碳的研究进展[J].地球科学进展,2000,15(5):559-564.]
[14]Liu Ruizhi,Zhang Xuehong. The progress of oceanic carbon cycle models [J].Chinese Journal of Atmospheric Sciences,1992, 16: 494-501. [刘瑞芝,张学洪. 海洋碳循环模式的进展[J]. 大气科学, 1992,16:494-501.]
[15]Craig H. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea [J]. Tellus,1957,9:1-17.
[16]Oeschger H, Siegenthaler U, Schotterer U, et al. A box diffusion model to study the carbon dioxide exchange in nature [J].Tellus,1975,27:168-192.[17]Broecker W S. Glacial to interglacial changes in ocean and atmospheric chemistry [A]. In:Berger A,ed. Climatic Variations and Variability: Facts and Theories [C]. Dordrecht:Reidel D, 1981.109-120.
[18]Boyle E A. The role of vertical chemical fractionation in controlling late quaternary atmospheric carbon dioxide[J]. Journal of Geophysical Research, 1988, 93 (C12): 15 701-15 714.
[19]Broecker W S, Peng T H, Engh R. Modeling the carbon system [J]. Radiocarbon, 1980, 22: 565-598.
[20]Crane A J. The use of tracers in modelling the oceanic uptake of carbon dioxide [J]. Philosophical Transactions of the Royal Society of London,1988, A325: 23-42.
[21]Stocker T F, Broecker W S, Wright D G. Carbon uptake experiments with a zonally averaged global ocean circulation model [J]. Tellus,1994, 46B: 103-122. 
[22]Base Jr C F, Killough G G. Chemical and biological processes in CO2 ocean models [A]. In: Trabalka J R, Reichle D E, eds. The Changing Carbon Cycle: A Global Analysis [C]. New York: Springer-Verlag, 1986.329-347.
[23]Maier-Reimer E, Hasselmann K. Transport and storage of CO2 in the ocean—An inorganic ocean-circulation carbon cycle model [J]. Climatic Dynamics,1987, 2: 63-90.
[24]Hasselmann K. An ocean model for climate variability studies [J]. Progress in Oceanography,1982, 11: 69-92.
[25]Bacastow R, Maier-Reimer E. Ocean-circulation model of the carbon cycle [J]. Climate Dynamics, 1990, 4: 95-125.
[26]Sarmiento J L, Orr J C, Siegenthaler U. A perturbation simulation of CO2 uptake in an ocean general circulation model [J]. Journal of Geophysical Research,1992, 97: 3 621-3 645.
[27]Gent P R, McWilliams J C. Isopycnal mixing in ocean circulation models [J]. Journal of Physical Oceanography,1990, 20: 150-155.
[28]Gent P R, Willebrand J, McDougall T J, et al. Parameterizing eddy-induced tracer transports in ocean circulation models [J]. Journal of Physical Oceanography, 1995, 25: 463-474.
[29]Xu Yongfu, Watanabe Y W, Aoki S, et al. Simulations of storage of anthropogenic carbon dioxide in the North Pacific using an ocean general circulation model [J]. Marine Chemistry, 2000, 72: 221-238.
[30]Aumont O, Orr J C, Monfray P. Nutrient trapping in the equatorial Pacific: The ocean circulation solution [J]. Global Biogeochemical Cycles, 1999, 13: 351-369.
[31]Maier-Reimer E. Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions [J]. Global Biogeochemical Cycles, 1993, 7: 645-677.
[32]Najjar R G, Sarmiento J L, Toggweiler J R. Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model [J]. Global Biogeochemical Cycles, 1992, 6: 45-76.
[33]Yamanaka Y, Tajika E. The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model [J]. Global Biogeochemical Cycles, 1997, 10: 361-382.
[34]Sarmiento J L, Hughes T M C, Stouffer R J, et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998, 393: 245-249.
[35]Le Quéré C, Orr J C, Monfray P. Interannual variability of the oceanic sink of CO2 from 1979 through 1997 [J]. Global Biogeochemical Cycles, 2000, 14(4): 1 247-1 265.
[36]Orr J, Maier-Reimer E, Mikolajewicz U, et al. Estimates of anthropogenic carbon uptake from four 3-D global ocean models [J]. Global Biogeochemical Cycles, 2001, 15: 43-60.
[37]Taylor N K. Seasonal uptake of anthropogenic CO2 in an ocean general circulation model [J]. Tellus,1995,47B:145-169.
[38]Murnane R J, Sarmiento J L, Le Quere C. Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans [J]. Global Biogeochemical Cycles,1999, 13:287-305.
[39]Sarmiento J L, Monfray P, Maier-Reimer E, et al. Sea-air CO2 fluxes and carbon transport: A comparison of three ocean general circulation models [J]. Global Biogeochemical Cycles,2000, 14: 1 267-1 281.
[40]Keeling C D, Bacastow R B, Carter A I, et al. A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data [A]. In: Peterson D H, ed. Aspects of Climate Variability in the Pacific and the Western Americas [C]. Washington DC: American Geophysical Union,1989.165-236.
[41]Dutay J C, Bullister J L, Doney S C, et al. Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models [J].Ocean Modelling,2002, 4: 89-120.
[42]Matsumoto K, Sarmiento J L, Key R M,et al. Evaluation of ocean carbon cycle models with data-based metrics[J].Geophysical Research Letters,2004,31:L07303,doi:10.1029/2003GL018970.
[43]Doney S C, Lindsay K, Caldeira K.Evaluating global ocean carbon models:The importance of realistic physics[J].Global Biogeochemical Cycles,2004,18: GB3017,doi:10.1029/2003GB002150. 
[44]Popova E E, Ryabchenko V A, Fasham M J R. Biological pump and vertical mixing in the Southern Ocean: Their impact on atmospheric CO2 [J].Global Biogeochemical cycles,2000, 14(1): 477-498.
[45]Walsh J J, Dieterle D A, Lenes J. A numerical analysis of carbon dynamic of the Southern Ocean phytoplankton community: The roles of light and grazing in effecting both sequestration of atmospheric CO2 and food availability to larval krill [J].Deep-Sea Research II,2001, 48: 1-48.
[46]Chai F, Dugclace R C, Peng T -H. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: Model development and silicon and nitrogen cycle [J].Deep-Sea Research II, 2002, 49: 2 713-2 745.
[47]Six K D, Maier-Reimer E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model [J].Global Biogeochemical Cycles,1996, 20: 559-583.
[48]Gregg W W. Tracking the SeaWiFs record with a coupled physical/ biogeochemical/radiation model of the global oceans [J].Deep-Sea Resarch II,2002, 49: 81-105.
[49]Christian J R, Verschell M A, Murtugudde R. Biogeochemical modeling of the tropical Pacific Ocean I: Seasonal and interannual variability [J].Deep-Sea Research II,2002, 49: 509-543.
[50]DiTullio G R, Hutchins D A, Bruland K W. Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean [J]. Limnology and Oceanography, 1993, 38(3): 495-508.
[51]Doney S C, Kleypas J A, Sarmiento J L. The US JGOFS synthesis and modelling project—An introduction [J]. Deep-Sea Research II, 2002, 49: 1-20.
[52]Shi Guangyu,Zhao Fengsheng,Hu Rongming. A simple model of carbon exchange between the atmosphere and ocean[A].In:Proceedings of National Symposium on Climate Change and Environment Issues [C]. Beijing: Science and Technology Association of China, 1990.[ 石广玉, 赵凤生, 胡荣明. 一个简单的大气海洋碳交换模式[A].见:全国气候变化和环境问题学术讨论会论文集[C].北京:中国科学技术协会,1990.]
[53]Xu Yongfu. The buffer capability of the ocean to increasing CO2[J].Advances in Atmospheric Sciences, 1992, 9: 501-510.
[54]Shi Guangyu, Guo Jiandong . One-dimensional analysis of global carbon cycle [J].Chinese Journal of Atmospheric Sciences,1997, 21:413-425. [石广玉, 郭建东. 全球二氧化碳循环的一维模式研究[J]. 大气科学, 1997, 21:413-425.]
[55]Dong Tiaoling, Wang Mingxing, Liu Ruizhi. Two-dimensional atmospheric CO2—Atlantic carbon cycle model [J].Chinese Journal of Atmospheric Sciences,1994, 18: 631-640. [董调玲,王明星,刘瑞芝. 二维的大气CO2——大西洋碳循环模式[J].大气科学,1994, 18: 631-640.]
[56]Xing Ru'nan. Three-dimensional model of the carbon cycle in the ocean [J].Journal of Beijing Meteorological College,1995, (2):37-41. [邢如楠. 一个三维全球海洋碳循环模式[J].北京气象学院学报,1995,(2):37-41.]
[57]Pu Yifeng, Wang Mingxing. An ocean carbon cycle model, Part I: Establishing of carbon model including an oceanic dynamic general circulation field, chemical, physical and biological processes occurred in the ocean [J].Climatic and Environmental Research,2000, 5(2): 129-140. [浦一芬,王明星. 海洋碳循环模式(I)——一个包括海洋动力学环流、化学过程和生物过程的二维碳循环模式的建立[J].气候与环境研究,2000, 5(2): 129-140.]
[58]Pu Yifen, Wang Mingxing. An ocean carbon cycle model, Part II: Simulation analysis on the Indian Ocean [J].Climatic and Environmental Research,2001, 6(1): 67-76. [浦一芬,王明星. 海洋碳循环模式(II)——对印度洋的模拟结果分析[J]. 气候与环境研究,2001, 6(1): 67-76.]
[59]Xing Ru'nan. A three-dimensional world ocean carbon cycle model with ocean biota [J].Chinese Journal Atmospheric Sciences,2000, 24(3): 333-340. [邢如楠. 带生物泵三维全球海洋碳循环模式[J].大气科学,2000, 24(3): 333-340.]
[60]Xing Ru'nan, Wang Zhanggui. Numerical simulation of the response of CO2 in surface water of tropical Pacific to El Niño events [J].Acta Meteorologica Sinica,2001, 59(3): 308-317. [邢如楠,王彰贵. 热带太平洋表面水中CO2对El Niño事件响应的数值模拟[J]. 气象学报,2001, 59(3): 308-317.]
[61]Jin Xin, Shi Guangyu. A simulation of CO2 uptake in a three dimensional ocean carbon cycle model [J].Acta Meteorologica Sinica,2000, 58(1): 40-48. [金心,石广玉. 海洋对人为CO2吸收的三维模式研究[J].气象学报,2000, 58(1): 40-48.]
[62]Jin Xin, Shi Guangyu. The role of biological pump in ocean carbon cycle [J].Chinese Journal Atmospheric Sciences,2001, 25: 683-688. [金心,石广玉. 生物泵在海洋碳循环中的作用[J].大气科学,2001, 25: 683-688.]
[63]Jin Xin, Shi Guangyu. A simulation of nature and bomb radiocarbon in global ocean circulation models [J]. Chinese Journal Atmospheric Sciences,2000, 24: 341-354. [金心,石广玉. 海洋环流模式模拟自然和核辐射14C的分布[J].大气科学,2000, 24: 341-354.]
[64]Xu Yongfu, Wang Mingxing, Jin Xiangze. A two-dimensional ocean thermohaline circulation carbon cycle model [J].Chinese Journal of Atmospheric Sciences,1997, 21(5): 573-580. [徐永福,王明星,金向泽. 二维海洋温盐环流碳循环模式[J]. 大气科学,1997, 21(5): 573-580.]
[65]Houghton J T, Jenkins G J, Ephraums J J. Climate Change: The IPCC Scientific Assessment [M]. Cambridge, UK: Cambridge University Press, 1990.
[66]Houghton J T, Meira Filho L G, Callander B A, et al. Climate Change 1995: The Science of Climate Change [M]. Cambridge, UK: Cambridge University Press, 1996.
[67]Sarmiento J L, Toggweiler J R, Najjar R. Ocean carbon-cycle dynamics and atmospheric pCO2 [J].Philosophical Transactions of the Royal Society of London,1988, A 325: 3-21.
[68]Goyet C, Davis D. Estimation of total CO2 concentration throughout the water column [J].Deep-Sea Research I,1997, 44:859-877.
[69]Takahashi T, Wanninkhof R H, Feely R A, et al. Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference [A]. In: Proceedings of the 2nd International Symposium CO2 in the Oceans [C].Tsukuba, Japan: National Institute for Environmental Studies, 1999.9-15.
[70]Stephens B B, Keeling R F, Heimann M. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration [J].Global Biogeochemical Cycles, 1998, 12: 213-230.
[71]Winguth A M E, Heimann M, Kurz K D, et al. El-Nio-Southern oscillation related fluctuations of the marine carbon cycle [J].Global Biogeochemical Cycles,1994, 8:39-63.
[72]Caldeira K, Duffy P B. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide [J]. Science,2000, 287: 620-622.
[73]England M H, Rahmstorf S. Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models [J].Journal of Physical Oceanography,1999, 29: 2 802-2 827.
[74]Xu Yongfu, Zhao Liang, Pu Yifen, et al. Uncertainties in the estimate of the air-sea exchange flux of carbon dioxide [J]. Earth Science Frontiers, 2004, 11: 565-571. [徐永福,赵亮, 浦一芬, 等. 二氧化碳海气交换通量估计的不确定性[J]. 地学前缘, 2004, 11: 565-571.]
[75]Matear R J, Hirst A C. Climate change feedback on the future oceanic CO2 uptake [J]. Tellus B,1999, 51: 722-733.
[76]Joos F, Plattner G K, Stocker T F, et al. Global warming and marine carbon cycle feedbacks on future atmospheric CO2[J]. Science,1999, 284: 464-467.
[77]Bopp L, Monfray P, Aumont O, et al. Potential impact of climate change on marine export production [J].Global Biogeochemical Cycles, 2001, 15: 81-100.
[78]Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled model [J].Nature,2000, 408:184-187.
[79]Friedlingstein P, Bopp L, Ciais P, et al. Positive feedback between future climate change and the carbon cycle [J]. Geophysical Research Letter, 2001, 28: 1 543-1 546.
[80]Jones C D, Collins M, Cox P M, et al. The carbon cycle response to ENSO: A coupled climate-carbon cycle model study [J].Journal of Climate,2001, 14: 4 113-4 129.
[81]Rayner P J, Enting I G, Francey R J, et al. Reconstructing the recent carbon cycle from atmospheric CO2, 13C and O2/N2 observations [J]. Tellus,1999, 51B: 213-232.
[82]Chen Yiyu. Research direction of China global change [J].Advances in Earth Science,1999, 14(4): 319-323. [陈宜瑜. 中国全球变化的研究方向[J]. 地球科学进展,1999, 14(4): 319-323.]

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[6] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[7] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[8] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 刘慧, 苏纪兰. 基于生态系统的海洋管理理论与实践[J]. 地球科学进展, 2014, 29(2): 275-284.
[12] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[13] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[14] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[15] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
阅读次数
全文


摘要