地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 228 -235. doi: 10.11867/j.issn.1001-8166.2003.02.0228

研究论文 上一篇    下一篇

遥感地球化学研究
吴昀昭 1,2,田庆久 2,季峻峰 1,陈骏 1   
  1. 1.南京大学地球科学系,江苏 南京 210093;2.南京大学国际地球系统科学研究所,江苏 南京 210093
  • 收稿日期:2002-01-18 修回日期:2002-10-27 出版日期:2003-04-10
  • 通讯作者: 吴昀昭 E-mail:MG0029017@ymail.nju.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“季风环境的自然变化规律和北方干旱化的历史过程研究”(编号:G1999043401)资助.

STUDY ON THE REMOTE-SENSING GEOCHEMISTRY

Wu Yunzhao 1,2, Tian Qingjiu 2, Ji Junfeng 1, Chen Jun 1   

  1. 1.Department of Earth sciences, Nanjing University, Nanjing 210093, China;2.International Institute for Earth system science, Nanjing University, Nanjing 210093, China
  • Received:2002-01-18 Revised:2002-10-27 Online:2003-04-10 Published:2003-04-01

遥感地球化学是遥感技术与地球化学结合的产物。探讨了遥感地球化学产生的必然性、遥感地球化学的定义、基础理论、研究方法及应用。指出遥感地球化学的研究基础是地物波谱特征,并简要分析了矿物、岩石、水体、土壤、植被及广泛存在于星际间的一些挥发物质等的波谱特征及影响因素;归纳了遥感地球化学主要的研究方法。总结了遥感技术在矿产资源勘探、环境地球化学、生物地球化学、行星地球化学及全球变化等领域的应用,并展望了今后遥感地球化学的研究重点及发展方向。

With the development of analysis technics and the infiltration of other subjects, the new embranchments and new research fields of geochemistry were being gradually produced. Formerly achieving spatial information methods of geochemistry based on field sampling and analysis is time-consuming and very expensive. The technique of remote sensing is a quicker method. It has been widely used in geochemistry. Geochemistry and remote sensing combine to create remote-sensing geochemistry. It is a new subject. This paper presents the definition, tasks, research methods and applications of remote-sensing geochemistry, and at the end of this article, the prospects of remote-sensing geochemistry is put forward.I hope that this paper will contribute to the development of remote-sensing geochemistry of our country. The theoretic base of remote-sensing geochemistry is spectral features of materials. The research objects and methods of both geochemistry and remote-sensing geochemistry not only have some relations but also have some differences. Remote-sensing geochemistry and mineralogy, petrology, biology, mathematics have many affinities. The prominent characteristic of this new subject is that it can quickly and widely achieve the information of the Earth’s surface with the technique of remote sensing. It’s very important forremote-sensing geochemistry to have appropriate information extraction technique. Spectral matching, spectral unmixing and modified Gauss model are the three most used information extraction technique for remotesensing geochemistry. Nowadays global change research is a research hotspot, so remote-sensing geochemistry strives to achieve a whole-system understanding of the interrelationships among earth surface processes, ecological systems, and human activities. Remote-sensing geochemistry can contribute to not only the advance of geochemistry, but also remote sensing.

中图分类号: 

[1] Guo Jinyi, Yang Zhongfang. A brief introduction to the extension of geochemistry[J]. Advances in Earth Sciences, 1998, 13 (1): 78-80. [郭进义, 杨忠芳. 浅议地球化学的外延[J].地球科学进展, 1998,13 (1): 78-80.]

[2] Liu YuJie, Yang Zhongdong. The Principle and Algorithm for Dealing with Remote Sensing Data of MODIS[M]. Beijing: Science Press, 2001. 2-12. [刘玉洁, 杨忠东,. MODIS遥感信息处理原理与算法[M]. 北京:科学出版社, 2001. 2-12.]

[3] Pieters C M, Englert P A. Remote Geochemical Analysis: Elemental and Mineralogical Composition[M]. New York: Cambridge University Press, 1993.

[4] Institute for geological information. Remote sensing special[M].Beijing:Geological Publishing House,1980.[地质情报研究所编. 遥感专辑(第一辑)[M].北京: 地质出版社,1980.]

[5] Clark R N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy[A]. In: Manual of Remote Sensing[C]. New York: John Wiley Sons Inc, 1999.

[6] Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks I: Silicate minerals[J]. Modern Geology, 1970, 1: 283-300.

[7] Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks II: Carbonates[J]. Modern Geology, 1971, 2: 23-30.

[8] Wu Dewen, Zhu Guchang, Wu Jiansheng, et al. The analysis and application of spectral characteristics of rock samples from Mangya area, Qinghai Province[J]. Remote Sensing for land and resources, 2001, 4: 28-34. [吴德文, 朱谷昌, 吴健生, . 青海芒崖地区岩石光谱特征分析及应用[J]. 国土资源遥感, 2001, 4: 28-43.]

[9] Wang Haiping, Zhang Zonggui. A study reflective spectrum features of rocks from Duobaoshan area[J]. Acta Petrologica et Mineralogica, 1995, 14(4): 325-335. [王海平, 张宗贵. 多宝山地区岩石反射波谱研究[J]. 岩石矿物学杂志, 1995, 14(4): 325-335.]

[10] Hunt G R. Electromagnetic radiation: The communication link in remote sensing[A]. In: Siegal B S, Gillespite A R, eds. Remote Sensing in Geology[C]. New York:Eiley, 1980. 5-45.

[11] Condit H R. The spectral reflectance of American soils[J]. Photogrammetric Engineering, 1970, 36: 955-966.

[12] Stoner E R, Baumgardner M F. Characteristic variations in reflectance on surface soils[J]. Soil science societr of America Journal,1981,45:1 161-1 165.

[13] Dai Changda. A preliminary study of spectral reflectance features classification of Chinese primary soils and data managing[A]. In: Remote Sensing Anthology[C]. Beijing: Science Press, 1981.[戴昌达. 中国主要土壤光谱反射特性分类与数据处理的初步研究[A]. :遥感文选[C]. 北京: 科学出版社, 1981.]

[14] Wang Shaoqing. Reflectance spectral features and applications of soils and water[A]. In: Tong Qingxi, eds. Spectral Features of Chinese Representative Materials and Applications[C]. Beijing: Science Press, 1990.611-618. [王绍庆. 土壤和水体反射光谱特性及其应用[A]. :童庆禧等主编.中国典型地物波谱及其特征分析.[C]. 北京: 科学出版社, 1990.611-618.]

[15] Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation[M]. New York: John Wiley Sons, Inc, 1994. 1-750.

[16] Knipling E B. Physical and physiological basis of the reflectance of visible and near-infrared radiation from vegetation[J]. Remote Sensing of Environment, 2001, 1: 155-159.

[17] Gates D M, Keegan H J, Schleter J C, et al. Spectral Properties of plants[J]. Applied Optics, 1965, 1: 11-22.

[18] Sinclair T R, Hoffer R M, Schreiber M M. Reflectance and internal structure of leaves from several crops during a growing season[J]. Agronomy Journal, 1971, 63: 864-868.

[19] Carlson R W, Anderson M S, Johnson R E, et al. Hydrogen peroxide on the surface of Europa[J]. Science, 1999, 283:2 062-2 064.

[20] Fink U, Sill G. The infrared spectral properties of frozen volatiles[A]. In: Welkening L. Comets [C]. Tucson: University of Arizona,1982. 164-202.

[21] Sandford S A, Allamandola L, Tielens A, et al. Laboratory studies of the infrared spectral properties of CO in astrophysical ices[J]. The Astrophysical Journal, 1988, 329: 498-510.

[22] Zheng Lanfen, Wang Jinnian. The study of imaging spectroscopy remote sensing and retrieving image information[J]. Remote Sensing Environment China, 1992, 7 (1): 49-57. [郑兰芬, 王晋年. 成像光谱遥感技术及其图像光谱信息提取的分析研究[J]. 环境遥感, 1992, 7 (1): 49-57.]

[23] Clark R N, Roush T L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing application[J]. Journal of Geophysical Research, 1984, 89: 6 329-6 340.

[24] Cloutis E A. Hyperspectral geological remote sensing:Evaluation of analytical techniques[J]. International Journal of Remote Sensing, 1996, 17 (12): 2 215-2 242.

[25] Clark R N, Gallagher A J, Swayze G A. Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra[A]. In: Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop[C]. JPL Publication, 1990. 176-186.

[26] Okin G S, Roberts D, Murray B,et al. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments [J]. Remote Sensing of Environment, 2001, 77: 212-225.

[27] Gregory P A, David B L. A Biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment, 2000, 74: 99-112.

[28] Sunshine J M, Pieters C M, Pratt S F. Deconvolution of mineral absorption bands: An improved approach[J]. Journal of Geophysical Research, 1990, 95 (B5): 6 955-6 966.

[29] Sunshine J M, Pieters C M. Estimating model abundances from the spectra of natural and laboratory pyroxene mixture using the modified gaussian model[J]. Journal of Geophysical Research, 1993, 98 (E5): 9 075-9 087.

[30] Sunshine J M, Pieters C M, Pratt S F. Gaussian analysis of pyroxene reflectance spectra[A]. In: Lunar and Planetary Science Conference XIX[C]. Houston: Lunar and Planetary Institute, 1988. 1 151-1 152.

[31] Mustard J F, Sunshine J M. Mineral chemistry from reflectance application of the MGM to minerals of the tremolite-ferroactinolite solid solution series[J]. EOS, 1992, 73: 187.

[32] Mustard J F. Spectral modeling of the unknown: an example using tale and actinolite[A]. Lunar and Planetary Science Conference XXII[C]. Houston: Lunar and Planetary Institute, 1991. 949-950.

[33] Zhu Zhenhai. Remote sensing directly exploring technology of oil and natural gas[A]. In: The Institute for Remote Sensing Applications, Chinese Academy of Sciences, eds. New Progress of Remote Sensing Science[C]. Beijing: Science Press, 1995. 126-135. [朱振海. 油气遥感直接勘探技术及其发展趋势[A]. :中国科学院遥感应用研究所主编. 遥感科学新进展[C]. 北京: 科学出版社,1995. 126-135.]

[34] Wang Jinnian, Zheng Lanfen, Tong Qingxi. The Spectral absorption identification model and mineral mapping by imaging spectrometer data[J]. Remote Sensing Environment China, 1996, 11 (1): 20-32. [王晋年, 郑兰芬, 童庆禧. 成像光谱图像光谱吸收鉴别模型与矿物填图研究[J]. 环境遥感, 1996, 11 (1): 20-32.]

[35] Environmental Case Study:Coeur DAlene River Basin ProJect. Available from:http:// www. Pimausa.com/coeur.html.

[36] Hoogenboom H J, Dekker A G, Althuis I J A. Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters[J]. Remote Sensing of Environment, 1998, 65: 333-340.

[37] Gao B C, Goetz A F H, Wiscombe W J. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 mm water vapor band[J]. Geophysical Research Letter, 1993b, 40(4): 301-304.

[38] Alicia P O, Susan L U, Pinzon J E, et al.  Remote sensing of soil properties in the Santa Monica Mountains II: Hierarchical Foreground and Background Analysis[J]. Remote Sensing of Environment, 1998, 68: 138-151.

[39] Swayze G A, Clark R N, Pearson R M, et al. Mapping acid generating minerals at the California gulch superfund site in Leadville. Colorado using imaging spectroscopy[A]. In: Summaries of the Sixth Annual JPL Airborne Earth Science Workshop[C]. Jet Propulsion Laboratory, Pasadena CA, 1996. 231-234.

[40] Boine J, Kuka K, Gl Ber C, et al. Multispectral investigation of acid mine lakes of lignite open cast mines in Central Germany[A]. In: IGARSS'99 Proceedings[C]. Hamburg Germany, 1999. 855-857.

[41] Gitelson A, Garbuzov G, Szilagyi F, et al. Quantitative remote sensing methods for real-time monitoring of inland waters quality[J]. International Journal of Remote Sensing, 1993, 14 (7): 1 269-1 295.

[42] Xu Ruisong, Ma Yueliang, Lv Huiping. Biogeochemical effects of gold and associated elements—A case study of the Hetai gold deposit[J]. Geochimica, 1996, 25 (2): 196-203. [徐瑞松, 马跃良, 吕惠萍. Au 及伴生元素生物地球化学效应研究——以广东河台金矿为例[J]. 地球化学, 1996, 25 (2): 196-203.]

[43] Ma Yueliang. Biogeochemistry of gold and methods of remote sensing in prospecting for ore deposits[J]. Geology-Geochemistry, 1999, 27 (1): 49-56. [马跃良. 金的生物地球化学及遥感探矿方法[J]. 地质地球化学, 1999, 27 (1): 49-56.]

[44] Collins W, Chang S H, Rains G, et al. Airborne biogeochemical mapping of hidden mineral deposits[J]. Economic Geology, 1983, 78 (4): 737-749.

[45] Schwaller M R, Tkach S J. Premature leaf senescence as: Remote sensing detection and utility for geobotanical prospecting[J]. Economical Geology, 1985, 80 (2): 250-255.

[46] Xu Ruisong. Remote sensing study of gold biogeochemical effects in the western Guangdong-Hainan Area—A case study of the Hetai gold deposit[J]. Acta Geologica Sinca, 1992, 66 (2): 170-181. [徐瑞松. 粤西、海南金矿生物地化效应的遥感研究[J]. 地质学报, 1992,66 (2): 170-181.]

[47] Pu Ruiliang, Gong Peng. Hyperspectral remote sensing and its applications[M]. Beijing: High Education Press, 2000. 193-202. [浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000. 193-202.]

[48] Swayze G A, Clark R N. Infrared Spectra and Crystal Chemistry of Scapolites: Implications for Martian Mineralogy[J]. Journal of Geophysical Research,1990,95:4 481-14 495.

[49] Calvin W M, et al. Spectra of the icy galilean satellites from 0.2 to 5 microns: A compi-lation, new observations and a recent summary [J]. Journal of Geophysical Research,1995, 100:19 041-19 048.

[50] Christensen P R, et al. Thermal Emission Spectrometer Experiment: Mars Observer Mission[J]. Journal of Geophysical Research, 1992, 97: 7 719-7 734.

[51] King T V V,Clark R N,Calvir W M, et al. Evidence for ammonium-bearing minerals on Ceres[J]. Science,1992,276:1 551-1 553.

[52] USGS. New Evidence Suggests Mars Has Been Cold and Dry “Red Planet” Abundant with Green Minerals[EB/OL]. 2000. Available from: USGS press release via the Internet Accessed 2000-10.

[53] Veverka J, Robinson M, Thomas P, et al. NEAR at eros: Imaging and spectral results[J]. Science, 2000, 289: 2 088-2 097.

[54] Bandfield J L, Hamilton V E, Christensen P R. A global view of martian surface compo-sitions from MGS-TES[J]. Science, 2000, 287: 1626-1630.

[55] Wang Shaoqiang, Xu Jun, Zhou Chenghu. The effects of land cover change on carbon cycle: A case study in the Estuary of Yellow River Delta[J]. Journal of Remote Sensing, 2001, 5 (2): 142-148. [王绍强, 许珺, 周成虎. 土地覆被变化对陆地碳循环的影响[J]. 遥感学报, 2001, 5(2): 142-147.]

[1] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[2] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[3] 魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.
[4] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[5] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[6] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[7] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[8] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[9] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[10] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[11] 崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.
[12] 刘旸,蔡波,班显秀,袁健,耿树江,赵姝慧,李帅彬. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.
[13] 王志慧, 刘良云. 黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测[J]. 地球科学进展, 2013, 28(8): 948-956.
[14] 朱子先, 臧淑英. 基于遗传神经网络的克钦湖叶绿素反演研究[J]. 地球科学进展, 2012, 27(2): 202-208.
[15] 崔月菊, 杜建国, 张德会,孙玉涛. 应用于地震预测的遥感气体地球化学[J]. 地球科学进展, 2012, 27(10): 1173-1177.
阅读次数
全文


摘要