地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 705 -713. doi: 10.11867/j.issn.1001-8166.2002.05.0705

全球变化研究 上一篇    下一篇

全球变化条件下的土壤呼吸效应
彭少麟,李跃林,任海,赵平   
  1. 中国科学院华南植物研究所,广东 广州 510650
  • 收稿日期:2002-01-04 修回日期:2002-05-31 出版日期:2002-12-20
  • 通讯作者: 彭少麟(1957-),男,广东人,研究员,主要从事生态学方面的研究工作. E-mail: slpeng@scib.ac.cn E-mail:slpeng@scib.ac.cn
  • 基金资助:

    国家自然科学基金重大项目“中国东部样带主要农业生态系统与全球变化相互作用机理研究”(编号:39899370);中国科学院知识创新工程重要方向项目“南方丘陵坡地农林复合生态系统构建机理与可持续性研究”(编号:KZCX2-407);广东省重大基金项目“广东省主要农业生态系统与全球变化相互作用机理研究”(编号:980952)资助.

PROGRESS IN RESEARCH ON SOIL RESPIRATION UNDER THE GLOBAL CHANGE

PENG Shao-lin,LI Yue-lin,REN Hai,ZHAO Ping   

  1. South China Institute of Botany,The Chinese Academy of Sciences,Guangzhou 510650,China
  • Received:2002-01-04 Revised:2002-05-31 Online:2002-12-20 Published:2002-10-01

土壤呼吸是陆地植物固定CO2尔后又释放CO2返回大气的主要途径,是与全球变化有关的一个重要过程。综述了全球变化下CO2浓度上升、全球增温、耕作方式的改变及氮沉降增加的土壤呼吸效应。大气CO2浓度的上升将增加土壤中CO2的释放通量,同时将促进土壤的碳吸存;在全球增温的情形下,土壤可能向大气中释放更多的CO2,传统的土地利用方式可能是引发温室气体CO2产生的重要原因,所有这些全球变化对土壤呼吸的作用具有不确定性。认为土壤碳库的碳储量增加并不能减缓21世纪大气CO2浓度的上升。据此讨论了该问题的对策并提出了今后土壤呼吸的一些研究方向。其中强调,尽管森林土壤碳固定能力有限,但植树造林、森林保护是一项缓解大气CO2上升的可行性对策;基于现有田间尺度CO2通量测定在不确定性方面的进展,今后应继续朝大尺度田间和模拟程序方面努力;着重回答全球变化条件下的土壤呼吸过程机理;区分土壤呼吸的不同来源以及弄清土壤呼吸黑箱系统中土壤微生物及土壤动物的功能。当然,土壤呼吸的测定方法尚有待改善。

Soil respiration is the primary path by which CO2 fixed by land plants returns to the atmosphere, and a key process in relation to the global change. The objective of this paper is to provide a brief scientific review on the effects of soil respiration in the circumstances of rising concentrations of CO2, global warming, tillage cultivation changing, increasing deposition of nitrogen from the atmosphere. The rising concentrations of CO2 in the atmosphere will increase the flux of soil CO2 emission, while it will prompt the potential of soil carbon sequestration. Organic matter decomposition is likely to be stimulated more than net primary productivity (NPP), which would lead to the release of more CO2 from the soil to the atmosphere in the event of global warming. The traditional land uses of China probably result in declines of soil organic carbon, much of this loss in soil organic carbon can be attributed to tillage effects which cause more CO2 emission from soils. All of these global changes including the rising concentrations of CO2, global warming, and [WTBX]etc.[WT] are playing an ambiguous role in the sequestering of organic carbon by soils. Summary showed that a large increase in the soil carbon pool seems unlikely to moderate the rise in atmospheric CO2 during the 21th century. the strategies were discussed in terms of this problem, and some emphases of further study in this field were suggested. It emphasizes that forest would be act as a good media of soil carbon sequestration in spite of its limited capacity of sequestrating soil carbon, expanding afforestation and forest protection would be an effective method to mitigate the rising of CO2 in the atmosphere. Further study to soil respiration should focus on the followings:
(1) There is large temporal and spatial variability in the soil atmosphere exchange of CO2, as impacted by global change on global scale. Based on the progress on the decreasing the uncertainty of field scale flux measurements, Much effort should be made and direct to large scale field and modeling programs
(2) For the high complexity of global change which impacts on soil respiration, in natural ecosystems, there is much uncertainty which longterm rising CO2 concentrations how to effect ecosystem. So soil processes of soil respiration under global change is a key question should be answered.
(3) Soil respiration is originated from a black box, partitioning soil CO2 emissions by source (soil organic matter mineralization, litter decomposition, root respiration ) is difficult. The contribution of each group needs to be understood to evaluate implications of global change on soil carbon cycling and sequestration. And much attention will be paid to soil microbes and soil fauna. First of all, methods of the measurement of soil respiration should be improved. 

中图分类号: 

[1]Peng Shaolin. Global change and sustainable development[J]. Chinese Journal of Ecology, 1998,17(3): 21-28. [彭少麟. 全球变化与可持续发展[J]. 生态学杂志,1998,17(3): 21-28.]
[2]Peng Shaolin. Global change and sustainability development[J]. Ecological Science,1997,16(2):1-8. [彭少麟.全球变化现象及其效应[J].生态科学,1997,16(2):1-8.]
[3]Gainey P L. Parallel formation of carbon dioxide, ammonia and nitrate in soil[J]. Soil Science, 1919, 7: 293-311.
[4]Schlesinger W H. Carbon balance in terrestrial detritus[J]. Annual Review of Ecological Systematics, 1977, 8:51-81.
[5]Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B: 81-99.
[6]Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochem Cycles, 1995, 9: 23-36.
[7]Field, C B, Behrenfeld M J, Randerson J T,et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281: 237-240.
[8]Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models[J]. Journal of Geophysical Research, 1997, 102: 18 771-18 800.
[9]Fang Jingyun, Wei Menghua. Carbon cycle in the arctic terrestrial ecosystems in relation to the global warming[J]. Acta Scientiae Circumtantiae, 1998, 18(2): 113-121.[方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报, 1998, 18(2): 113-121.]
[10]Van Veen J A, Liljeroth E, Lekkerkek, L J A,et al. Carbon fluxes in plant soil systems at elevated atmospheric CO2 levels[J]. Ecological Applications, 1991, 1: 175-191.
[11]Rogers H H, Runion G B, Krupa S V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere[J]. Environmental Pollution, 1994, 83: 155-189.
[12]Harrison K G, Broecker W S, Bonani G.  A strategy for estimating the impact of CO2 fertilization on soil carbon storage[J]. Global Biogeochem Cycles, 1993, 7: 69-80.
[13]Wood C W, Westfall D G, Peterson G A. Soil carbon and nitrogen changes on initiation of no-till cropping systems[J]. Soil Science Society of America Journal, 1991, 55: 470-476.
[14]Hungate B A, Holland E A, Jackson R B,et al. The fate of carbon in grasslands under carbon dioxide enrichment[J]. Nature, 1997, 388: 576-579.
[15]Zak D R, Tilman D, Parmenter R R, et al. Plant production and soil microorganisms in late-successional ecosystems: A continental-scale study[J]. Ecology, 1994, 75: 2 333-2 347.
[16]Schlesinger W H. Carbon balance in terrestrial detritus[J]. Annual Review of Ecological Systematics, 1977, 8:51-81.
[17]Kirschbaum M U F. The temperature of dependence soil organic matter decomposition, and the effect of global warning on soil carbon storage[J]. Soil Biological Geochemistry,1995, 27: 753-760.
[18]Bowden R D, Nadelhoffer K J, Boone R D,et al. Contributions of aboveground litter, belowground litter, and root respiration to soil respiration in a temperate mixed hardwood forest[J]. Canadian Journal of Forest Research, 1993, 23: 1 402-1 407.
[19]Andrews J A, Harrison K G, Matamala R ,et al. Separation of root respiration from total soil respiration using 13C labelling during Free-Air CO2 Enrichment(FACE) [J]. Soil Science Society of America Journal, 1999, 63(5): 1 429-1 435.
[20]Allen A S, Andrews J A, Finzi A C,et al. Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus teada forest[J]. Ecological Applications, 2000, 10(2): 437-448.
[21]Peterjohn W T, Melillo J M, Steudler P A,et al. Responses of trace gas fluxes and N availability to experimentally elevated soil tempera-tures[J]. Ecological Applications, 1994, 4: 617-625.
[22]Christensen T R, Michelsen A, Jonasson S,et al. Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations[J]. Oikos , 1997, 79: 34-44.
[23]Rustad L E, Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA[J]. Global Change Biology, 1998, 4: 597-605.
[24]Palmer-Winkler J, Cherry R S, Schlesinger W H. The Q10  relationship of microbial respiration in a temperate forest soil[J]. Soil Biological Biochemistry, 1996, 28: 1 067-1 072.
[25]Kötterer T, Reichstein M, Andren O,et al. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models[J]. Biological Fertile Soils, 1998, 27: 258-262.
[26]Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8: 315-323.
[27]Nikli′nska M, Marya′nski M, Laskowski R. Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change[J]. Biogeochemistry, 1999, 44: 239-257.
[28]Boone R D, Nadelhoffer K J, Canary J D,et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396: 570-572.
[29]Liu Shaohui, Fang Jingyun. Effect factors of soil respiration and the temperature's effects on soil respiration in the global scale[J]. Acta Ecologica Sinica, 1997,17(5): 469-476. [刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5): 469-476.]
[30]Wu Zhongmin, Zeng Qingbo, Li Yide,et al. A preliminary research on the carbon storage and CO2 release of the tropical forest soils in Jiangfengling, Hainan Island, China[J]. Acta Phytoecologica Sinica, 1997, 21(5): 416-423. [吴仲民, 曾庆波, 李意德,等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].植物生态学报, 1997, 21(5): 416-423.]
[31]Liu Shaohui, Fang Jingyun, Makoto Kiyota. Soil respiration of mountainous temperate forests in Beijing, China[J]. Acta Phytoecologica Sinica,1998,22(2): 119-126. [刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J]. 植物生态学报,1998, 22(2): 119-126.]
[32]Schimel D S, Braswell B H, Holland E A,et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemistry Cycles, 1994, 8: 279-293.
[33]McGuire A D, Melillo J M, Kicklighter D W,et al. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates[J]. Journal of Biogeography, 1995, 22: 785-796.
[34]Seatedt T R, Coxwell C C, OjimaD S,et al. Controls of plant and soil carbon in a semi-humid temperate grasslands[J]. Ecological Applications,1994,4(2):344-353.
[35]Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J]. Science, 1996,272: 393-396.
[36]Harden J W, O'Neill K P, Trumbore S E,et al. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest[J]. Journal of Geophysical Research, 1997, 102: 28 805-28 816.
[37]Trumbore S E, Harden J W. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area[J]. Journal of Geophysical Research, 1997, 102: 28 817-28 830.
[38]Chapman S J, Thurlow M. Peat respiration at low temperatures[J]. Soil Biological Biochemistry, 1998, 30: 1 013-1 021.
[39]Lindroth A, Grelle A, Moren A S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity[J]. Global Change Biology, 1998, 4: 443-450.
[40]Oechel W C, Hastings S J, Vourlitis C,et al. Recent change of arctic tundra ecosystems from a net carbon sink to a source[J]. Nature, 1993, 361: 520-523.
[41]Oechel W C, Vourlitis G L, Hastings S J,et al. Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska[J]. Ecological Applications, 1995, 5: 846-855.
[42]Goulden M L, Wofsy S C, Harden J W,et al. Sensitivity of boreal forest carbon balance to soil thaw[J]. Science, 1998, 279: 214-217.
[43]Billings W D, Luken J O, Mortensen D A,et al. Increasing atmospheric carbon dioxide: Possible effects on arctic tundra[J]. Oecologia, 1983, 58: 286-289.
[44]Moore T R, Knowles R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils[J]. Canadian Journal of Soil Science, 1989, 69: 33-38.
[45]Woodwell G M. Biotic feedbacks from the warming of the Earth[A]. In: Woodwell G M, MacKenzie F T, eds. Biotic Feedbacks in the Global Climatic System[C]. Oxford: Oxford University Press, 1995. 3-21.
[46]Fang Jingyun, Tang Yanhong, Koizumi H,et al.Evidence of wintertime CO2 emission from snow-covered grounds in high latitudes[J]. Sciences in China (Series D), 1999,42(4): 378-382. [方精云,唐艳鸿,小泉博弘,等.高纬度冬季下垫面释放CO2的证据[J].中国科学(D辑),1998, 28(6): 559-563.]
[47]Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J]. Science, 1996, 272: 393-396.
[48]Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348: 232-234.
[49]Schlesinger W H. Carbon balance in terrestrial detritus[J]. Annual Review of Ecological Systematics, 1977, 8:51-81.
[50] Batjes N H. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.
[51]Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest[J]. Soil Biological Biochemistry, 1994, 26: 1 409-1 415.
[52]Hogberg P, Ekblad A. Substrate-induced respiration measured in situ in a C3 -plant ecosystem using additions of C4 -sucrose[J]. Soil Biological Biochemistry, 1996, 28: 1 131-1 138.
[53]Cebrian J, Duarte C M. Plant growth-rate dependence of detrital carbon storage in ecosystems[J]. Science, 1995, 268: 1 606-1 608.
[54]Oechel W C, Cowles S, Grulke N,et al. Transient nature of CO2 fertilization in arctic tundra[J]. Nature, 1994, 371: 500-503.
[55]Wildung R E, Garland T R, Buschbom R L. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils[J]. Soil Biological Biochemistry, 1975, 7: 373-378.
[56]Parker L W, Miller J, Steinberger Y,et al. Soil respiration in a Chihuahuan desert rangeland[J]. Soil Biological Biochemistry,  1983, 15: 303-309.
[57]Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science of Society America Journal, 1986, 50: 627-633.
[58]Six J, Elliott E T, Paustian K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science of Society America Journal, 1998, 62: 1 367-1 377.
[59]Schlesinger W H. Soil organic matter: A source of atmospheric CO2[A]. In: Woodwell G M, ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle[C]. New York: John Wiley, 1984. 111-127.
[60]Fischer G, Heilig G K. Population momentum and the demand on land and water resources[R]. Philosopical Transaction of the Royal Society of London, 1997, 352B: 869-889.
[61]Dick W A. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity[J]. Soil Science of Society America Journal, 1983, 47: 102-107.
[62]Wood C W, Torbert H A, Rogers H H,et al. Free-air CO2 enrichment effects on soil carbon and nitrogen[J]. Agricultural and Forest Meteorology, 1994, 70:103-116.
[63]Blevins R L, Thomas G W, Cornelius P L. Influence of no-tillage and nitrogen fertilization on certain soil properties after 5 years of continuous corn[J]. Agron J, 1977, 69: 383-386.
[64]Campbell C A, Biederbeck V O, McConkey B G,et al. Soil quality -effect of tillage and fallow frequency[J]. Soil Biological Biochemistry, 1999, 31: 1-7.
[65]Kern J S, Johnson M G. Conservation tillage impacts on national soil and atmospheric carbon levels[J]. Soil Science of Socieg America Journal, 1993, 57: 200-210.
[66]Smith P, Powlson D S, Glendining M J,et al. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments[J]. Global Change Biology, 1997, 3: 67-79.
[67]Smith P, Powlson D S, Glendining M J,et al. Preliminary estimates of the poten-tial for carbon mitigation in European soils through no-till farming[J]. Global Change Biology, 1998, 4: 679-685.
[68]Gebhart D L, Johnson H B, Mayeux H S,et al. The CRP increases soil organic carbon[J]. Journal of Soil Water Conservation, 1994, 49: 488-492.
[69]Burke I C, Lauenroth W K, Coffin D P. Soil organic matter recovery in semiarid grasslands: Implications for the Conservation Reserve Program[J]. Ecological Applications, 1995, 5: 793-801.
[70]Robles M D, Burke I C. Legume, grass, and Conservation Reserve Program effects on soil organic matter recovery[J]. Ecological Applications, 1997, 7: 345-357.
[71]Cecilia A Pérez, Lars O, Hedin,et al. Nitrogen minerlization in two unpolluted old-growth forests of contrasting biodiversity and dynamics[J]. Ecosystems, 1998, 1: 361-373.
[72]Galloway J N, Schlesinger W H, Levy H,et al. Nitrogen fixa-tion:Anthropogenic enhancement-environmental response[J]. Global Biogeochemistry Cycles, 1995, 9: 235-252.
[73]Vitousek P M, Aber J D, Howarth R W,et al. Human alteration of the global nitrogen cycle: Sources and consequences[J]. Ecological Applications, 1997, 7: 737-750.
[74]Holland E A, Braswell B H, Lamarque J F,et al. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems[J]. Journal of Geophysical Research,1997, 102: 15 849-15 866.
[75]Townsend A R, Braswell B H, Holland E A,et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen[J]. Ecological Applications, 1996, 6: 806-814.
[76]Asner G P, Seastedt T R , Townsend A R. The decoupling of terrestrial carbon and nitrogen cycles[J]. BioScience, 1997, 47: 226-234.
[77]Fenn M E, Poth M A, Aber J D,et al. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses and management strategies[J]. Ecological Applications, 1998, 8: 706-733.
[78]Nadelhoffer K J, Emmett B A, Gundersen P,et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 135-148.
[79]Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest[J]. Soil Biological Biochemistry, 1994, 26: 1 409-1 415.
[80]Brumme R, Beese F. Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest[J]. Journal of Geophysical Research, 1992, 97: 12 851-12 858.
[81]Geng Yuanbo, Zhang shen, Dong Yunshe,et al. The content of soil organic and total nitrogen and correlativity between their content and fluxes of CO2,N2O and CH4 in Xinlin river basin stepp[J]. Acta Geographica Sinic, 2001,56(1):44-53. [耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报, 2001, 56(1):44-53.]
[82]Neilsen W A, Pataczek W, Lynch T,et al. Growth response of Pinus radiata to multiple applications of nitrogen fertilizer and evaluation of the quantity of added nitrogen remaining in the forest system[J]. Plant Soil, 1992,144: 207-217.
[83]Harding R B, Jokela E J. Long-term effects of forest fertilization on site organic matter and nutrients[J]. Soil Science of Society America Journal, 1994, 58: 216-221.
[84]Johnson D W. Nitrogen retention in forest soils[J]. Journal of Environmental Quality, 1992, 21: 1-12.
[85]Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1:77-91.
[86]Ding Li, Zhong Zepu, Li Shiyi,et al. Assimilation amd allocation of carbon and nitrogen in Alfalfa under doubled CO2 environment[J]. Acta Botanica Sinica, 1996,38(1):83-86. [丁莉,钟泽璞,李世仪,等.CO2倍增对紫花苜蓿碳氮同化与分配的影响[J].植物学报,1996,38(1):83-86.]
[87]Bai Kezhi, Zhong Zepu, Ding Li,et al. Some physiological responses to doubled CO2 environment in soy bean[J]. Chinese Science Bulletin, 1995,40:22. [白克智,钟泽璞,丁莉,等.大豆对大气CO2倍增的一些生理反应[J].科学通报,1995,40:22.]
[88]Zhang Xinshi, Zhou Guangsheng, Gao Qiong,et al. Study of global change and terrestrial ecosystems in China[J]. Earth Science Frontier, 1997,4(1-2):137-144. [张新时, 周广胜, 高琼, 等. 中国全球变化与陆地生态系统关系研究[J]. 地学前缘, 1997,4(1-2):137-144.]
[89]Ball A S. Microbial decomposition at elevated CO2 levels: effects of litter quality[J]. Global Change Biol, 1997, 3: 379-386.
[90]Lin Weihong, Zhang Fusuo, Bai Kezhi. Influences of the rising atmospheric CO2 concentration on plant rhizosphere micro-ecosystem[J]. Chinese Science Bulletin, 1999, 44(6): 1 690-1  696.[林伟宏,张福锁,白克智.大气CO2浓度升高对植物根际微生态系统的影响[J]. 科学通报, 1999, 44(6): 1 690-1 696.]
[91]Li Kerang, Chen Yufeng, Liu Shirong,et al. Mitigation and adaptation strategy of forestry in China to global climate change[J]. Acta Geographica Sinic, 1996, 51 (supplement):109-119. [李克让,陈育峰,刘世荣,等.减缓用适应全球气候变化的中国林业对策[J].地理学报,1996, 51(增刊):109-119.]
[92]Liu Guohua, Fu Bojie, Fang jingyun. Carbon dynamics of Chinese forests to global carbon balance[J]. Acta Ecologica Sinica, 2000, 20(5): 733-740. [刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000, 20(5): 733-740.]

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[12] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[13] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[14] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[15] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
阅读次数
全文


摘要