地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 163 -171. doi: 10.11867/j.issn.1001-8166.2001.02.0163

学科发展与研究 上一篇    下一篇

古代生物分子与分子考古学
赖旭龙   
  1. 中国地质大学地球科学学院,湖北 武汉  430074
  • 收稿日期:2000-06-12 修回日期:2000-08-24 出版日期:2001-04-01
  • 通讯作者: 赖旭龙(1964-),男,湖南益阳市人,教授,现主要从事古生物学、沉积学及分子古生物学的教学和科研工作. E-mail:xllai@cug.edu.cn

ANCIENT BIOMOLECULES AND MOLECULAR ARCHAEOLOGY—A REVIEW

LAI Xu-long   

  1. Faculty of Earth Sciences,China University of Geosciences,Wuhan  430074,China
  • Received:2000-06-12 Revised:2000-08-24 Online:2001-04-01 Published:2001-04-01

分别论述了从古DNA、古蛋白质、类脂化合物等古代生物分子的尺度去研究人类的起源和迁移,动、植物的家养和驯化过程及早期农业的发展,考古点动植物残骸的精确鉴定,新的定年技术以及古气候的变化等与考古学相关的许多重要问题。对分子考古学及其应用进行了综述,并就在我国开展分子考古学研究提出了展望。 

 As the development of modern molecular biology, organic geochemistry during past decade,it is possible to use ancient biomolecules including ancient DNA, ancient protein,biomarkers and stable isotopes to answer plenty of archaeology related key problems. This paper mainly reviews ancient biomolecules and its application to archaeology—the emerging field of molecular archaeology. It includes following three main parts:Firstly, ancient DNA preserved in ancient samples younger than 100,000 years can be recovered and amplified by polymerase chain reaction (PCR). It is possible for us to use ancient DNA for genetic analysis in human origin and migration,precise identification of archaeological remains, plant and animal domestication and development of early agriculture.Secondly, one area of ancient protein research where much greater investment has been made in predictive models of diagenesis, is that of amino acid racemization. The increase in proportion of the non biological (D) isomer of amino acid relative to L isomer has been widely used in archaeology as a tool for dating. This new dating approach is of great potential in archaeology and forensic medicine.Thirdly, biomarkers such as lipids and bitumen extracted from archaeological materials can reveal secrets of past civilizations. New data also prove that Carbon(C3, C4) and Nitrogen stable isotopes document the diet in ancient human populations.Finally, the author also prospect potential fields of molecular archaeology in China.

中图分类号: 

[1]  Higuchi R, Bowman B, Freiberger M,et al. DNA sequence from the quagga, an extinct member of the horse family[J].Nature, 1984,312:282~284.
[2]  Pääbo S. Molecular cloning of ancient Egyptian mummy DNA[J]. Nature, 1985, 314:644~645.
[3]  Golenberg E M, Giannsi D E, Clegg M T,et al. Chloroplast DNA sequence from a Miocene Magnolia species[J]. Nature,1990, 334:656~658.
[4]  Wayne R K, Leonard J A, Cooper A. Full of sound and fury: the recent history of ancient DNA[J]. Annu Rev Ecol Syst,1999, 30: 457~477.
[5]  Cano R J, Poniar H N, Pieninazek N J,et al. Amplification and sequencing of DNA from 120~135 million year old weevil[J]. Nature, 1993, 363: 536~538.
[6]  Lindahl T. Instability and decay of the primary structure of DNA[J]. Nature, 1993, 362:709~715.
[7]  Austin J J, Ross A J, Smith A B,et al. Problems of reproducibility—does geologically ancient DNA survive in amberpreserved insect? [J]. Proc R Soc London Ser B, 1997, 264:467~474.
[8]  Lindahl T. Facts and artifacts of ancient DNA[J]. Cell,1997, 90: 1~3.
[9]  Obar R, Green J. Molecular archaeology of the mitochondrial genome [J]. Journal of Molecular Evolution, 1985, 22(3):243~251.
[10]  Shibata D, Martin W J, Evertt S,et al. Molecular arcaheology—the presence of human Papilloma-virus in the late 1940s[J]. Laboratory Investigation, 1988,58: 84.
[11]  Pääbo S, Higuchi R G, Wilson A C. Ancient DNA and the polymerase chain reaction—the emerging field of molecular archaeology[J]. Journal of Biological Chemistry, 1989, 264:9 709~9 712.
[12]  Dreyfus J C. Molecular Archaeology[J]. MS-Medicine Sciences, 1989, 5: 607~608.
[13]  Ross P E. Trends in molecular archaeology-eloquent remains[J]. Scientific American, 1992, 266: 114.
[14]  Connan J, Nissenbaum A, Dessort D. Molecular archaeology: export of Dead Sea asphalts to Cannan and Egypt in the Chalcolithic-early bronze age (4th-3rd millennium BC)[J]. Geochim Cosmochim Acta, 1992, 56:2 743~2 759.
[15]  Krebs J. ABI grand finale welcoming addresses[J]. Ancient Biomolecules, 1998, 2: 101~103.
[16]  Yang Qun. A frontal area in palaeontology—Molecular tossil studies[J].Acta Palaeonfologica Sinica,1995,34(3):265~276.[杨群.古生物学领域的新辟园地—分子古生物学研究[J].古生物学报,1995, 34(3):265~276.]
[17]  Yang Hong. Authentication of ancient DNA Sequence—A reassessment of 18s rDNA Seqiences troma fossil Dinosaur cgg[J].Acta Palaeontologica Sinica, 1995,34(6):675~673.[杨洪.古代DNA序列的分析与甄别——兼评恐龙DNA研究[J].古生物学报,1995, 34(6):657~673.]
[18]  Yang Hong, Cheng An-jin, Yang Qun. Biomolecules in the geological record: Recoveryand applications[J].Geological Review,1998,44(1):44~51.[杨洪,程安进,杨群.地质体中的主要生物分子的研究方法及应用[J].地质论评,1998,44(1):44~51.]
[19]  Lai Xulong, Yang Qun, Yang Hong. Ancient DNA and itsapplication[A].In Yang Qun(ed).Principle andapproach of molecular palaeontology[C]. Beijing: Science Press,2001(in press).[赖旭龙,杨群,杨洪.古DNA及其应用[A].见:杨群主编:分子古生物学原理与方法[C].北京:科学出版社,2001(待版).]
[20]  CAI Sheng-he,YANG Huan-ming. Emerging field of ancient DNA study[J].Hereditas, 2000,22(1):41~46.[蔡胜和,杨焕明.方兴未艾的古代DNA的研究[J].遗传, 2000, 22(1): 41~46.]
[21]  Hunan Medical College. Study of an ancientcadaver in Mawangtui tomb No.1 of the HanDynasty in Changsha[M].Beijing:Ancient Memorial Press,1980,184~187.
[湖南医学院.长沙马王堆一号汉墓古尸研究[M].北京:文物出版社,1980. 184~187.]
[22]  Mullis K B, Faloo na F, Scharf S J,et al. Specific enzymatic amplication of DNA in vitro: the polymerase chain reaction[J]. Cold Spring Harbor Symposium Quant, Biology, 1986,51: 263~273.
[23]  Pääbo S, Higuchi R, Wilson A. Ancient DNA and the polymerase chain reaction[J]. The Journal of Biological Chemistry, 1989, 269: 9 709~9 712.
[24]  Wainscoat J S, Hill A V S, Boyce A L,et al. Evolutionary relationships of human populations from an analysis of nuclear DNA polymorphisms[J]. Nature, 1986, 319: 491~493.
[25]  Cann R L M, Stoneking M, Wilson A C. Mitochondrial DNA and human evolution[J]. Nature, 1987, 325: 31~36.
[26]  Handt O, Richards M, Trommsdorff M,et al. Molecular genetic analysis of the Tyrolean ice man[J]. Science, 1994,264: 1 775~1 778.
[27]  Beraud-Colomb E, Roubin R, Martin J,et al. Humanβ-globin gene polymorphisms characterized in DNA ancient bones 12,000 years old[J]. American Journal of Human Genetics, 1995, 57: 1 267~1 274.
[28]  Lassen C, Hummel S, Herrmann B. PCR based sex indenti-fication of ancient human bones by amplification of X-and Y-chromosomal sequences: A comparison [ J ]. Ancient Biomolecules, 1996, 1: 25~33.
[29]  Vernesi C, Caramell D, Sala S C,et al. Application of DNA sex test to bone specimens from three Etruscan (VII-III Century B C) archaeological sites[J]. Ancient Biomolecules,1999, 2: 295~305.
[30]  Hagelberg E. Ancient and modern mitochondrial DNA sequences and the colonization of the Pacific[J]. Electrophoresis, 1997, 18:1 529~1 533.
[31]  Krings M, Stone A, Schmitz R W,et al. Neanderthal DNA sequences and the origin of modern humans[J]. Cell, 1997,90(1): 19~30.
[32]  Ovchinnikov I V, Gö therström A, Romanova G P,et al.Molecular analysis of Neanderthal DNA from the northern Caucasus[J]. Nature, 2000, 404: 490~493.
[33]  Höss M. Ancient DNA: Neanderthal population genetics[J].Nature, 2000, 404: 453~454.
[34]  Walter R C, Buffler R T, Bruggemann J H,et al. Early human occupation of the Red Sea coast of Eritrea during the last interglacial[J]. Nature, 2000, 405:65~69.
[35]  Brown T. How ancient DNA may help in understanding the origin and spread of agriculture[J]. Phil Trans R Soc Lond B, 1999, 354: 89~98.
[36]  Rogers S O, Benish A J. Extraction of DNA from milligram amounts of fresh herbhrium and mummified plant tissues[J].Plant Mol Biol, 1985, 5: 69~76.
[37]  Brown T, Allaby R, Brown K,et al. Biomolecular archaeology of wheat: past, present and future[J]. World Archaeology, 1994, 25: 64~73.
[38]  Allaby R G, O' Donoghue K, Sallares R,et al. Evidence for the Survival of ancient DNA in charred wheat seeds from European archaeological sites[J]. Ancient Biomolecules, 1997,1(2): 119~129.
[39]  Rollo F, Venanzi F M, Amici A. Nucleic acids in mummified plant seeds: biochemistry and molecular genetics of pre-Columbian maize[J]. Gent Res, 1991, 58:193~201.
[40]  Goloubinoff P, Pääbo S, Wilson A C. Evolution of maize inferred from sequence diversity of an adh2 gene segment from archaeological specimens[J]. Proc Natl Acad Sci USA,1993, 90: 1 997~2 001.
[41]  Deakin W J, Rowley-Conwy P, Shaw C H. The sorghum of Qsar Ibrim: Reconstructing DNA templaes from ancient seeds[J]. Ancient Biomolecules, 1998, 2:117~124.
[42]  Monnerot M, Vigne J D, Bijuduval C,et al. Rabbit and man-genetic and historic approach[J]. Genetics Selection Evolution, 1994, 26: 167~182.
[43]  Hardy C, Callou C, Vigne J D,et al. Rabbit mitochondrial DNA diversity from prehistoric to modrn times[J]. Journal of Molecular Evolution, 1995, 40:227~237.
[44]  Wayne R K, Jenks S M. Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus[J]. Nature, 1991, 351: 565~568.
[45]  Sorenson M D, Cooper A, Paxinos E E. Relationship of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA[J]. Proc R Soc Lond B, 1999, 266: 2 187~2 193.
[46]  Lister A M, Kadwell M, Kaagan L M,et al. Ancient and modern DNA in a study of horse domestication[J]. Ancient Biomolecules, 1998, 2: 267~280.
[47]  Turner C L, Grant A, Bailey J F,et al. Patterns of genetic diversity in extant and extinct cattle populations: Evidence from sequence analysis of mitochondrial coding regions[J].Ancient Biomolecules, 1998, 2: 235~249.
[48]  Bailey J F, Richard M B, Macaulay V A. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species[J]. Proc R Soc Lond Ser B, 1996,263:1 467~1 473.
[49]  Cipollaro M, DiBernardo G, Galano G,et al. Ancient DNA in human bone remains from Pompeii archaeological site[J].Biochemical and Biophysical Research Communications,1998, 247: 901~904.
[50]  Bailey J F, Henneberg M, Colson I B. Monkey business in Pompeii-Unique find of a juvenile Barbary macaque skeleton in Pompeii indentified using osteology and ancient DNA techniques [J]. Molecular Biology and Evolution, 1999, 16:1 410~1 414.
[51]  Ivanov P L, Wadhams M J, Roby-R K,et al. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II[J]. Nature Genetics, 1996, 12: 417~420.
[52]  Goodfriend G A. Patterns of racemination and epimerization of amino acids in land snail shells over the course of the Holocene[J]. Geochim Cosmochim Acta, 1991,55:293~302.
[53]  Miller G H, Magee J W, Jull A J T. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemination in Emu eggshells[J]. Nature, 1997, 385: 241~244.
[54]  Collins M J, Waite E R, Van Duin A C T. Predicting protein decomposition: the case of aspartic-acid racemination kinetics[J]. Phil Trans R Soc Lond B , 1999, 354:51~64.
[55]  Brooks A S, Hare P E, Kokis J E,et al. Dating Pleistocene archaeological sites by protein diagenesis in orstrich eggshell[J]. Science, 1990, 248: 60~64.
[56]  Goodfriend G A. Rapid racemination of aspartic acid in mollusc shells and potential for dating over recent centuries[J].Nature, 1992, 357: 399~401.
[57]  Johnson B J, Miller G H. Archaeological applications of amino acid racemination[J]. Archaeometry, 1997, 39: 265~287.
[58]  Carolan V A, Gardner M L G, Lucy D,et al. Some considerations regarding the use of amino acid racemination in huamn dentine as an indicator of age at death[J]. Journal of Forensic Science, 1997, 42: 10~16.
[59]  Waite E R, Collins M J, Ritz-Timme S,et al. A review of the methodological aspects of aspartic acid racemination analysis for use of in forensic science[J]. Forensic Science International, 1999, 103:113~124.
[60]  Ritz-Timme S, Schtüz HW, Kaatsch HJ,et al. Age estimation: optimal methods in relation to the specific demands of forensic practise[J]. Forensic Sicences International, 2001(in press).
[61]  Bada J L, Wang X S, Hamilton H. Preservation of key biomolecules in the fossil record: current knowledge and future challenges[J]. Phil Trans R Soc Lond B, 1999, 354: 77~87.
[62]  Gillard R D, Hardman S M, Pollard A M,et al. Determinations of age at death in archaeological populations using the D/L ratio of aspartic acid in dental collagen
[J]. Archaeometry, 1991, 1990:637~644
[63]  Liu Deming, Lan Xiu, Wang Jinquan. Amino acid racemization datingof Holocene shell deposits from coastal area of Fujian[J].Acta Palaeontologica Sinica, 1987,26(3):345-353.[刘德明,蓝绣,王金权.福建沿海全新世贝壳沉积物的氨基酸外消旋年代测定[J].古生物学报,1987,26(3):345~353.]
[64]  Wu Peizhu,Qian Fang. The first study of the age of Yuanmou Man by the method ofamino acid race mization geochronology[J].Acta Anthropologica Sinica,1991,10(3):194-199.[吴佩珠,钱方.用氨基酸测年法对“元谋人”年代的初步研究[J].人类学报, 1993, 10 (3): 194~199.]
[65]  Poinar H N, Höss M, Bada J L,et al. Amino acid racemination and the preservation of ancient DNA[J]. Science,1996, 272: 864~866.
[66]  Poinar H N, Hofrelter M, Spaulding W G,et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothroeriops shastensis[J]. Science, 1998, 281: 402~406.
[67]  Eglinton G, Calvin M. Chemical fossil[J]. Scientific American, 1967, 216: 32~43.
[68]  Evershed R P. Biomolecular archaeology and lipids[J]. World Archaeology, 1993, 25: 74~93
[69]  Evershed R P, Dudd S N, Charters S,et al. Lipids as carriers of anthropogenic signals from prehistory[J]. Phil Trans R Lond B, 1999, 354: 19~31
[70]  Connan J. Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations[J]. Phil Trans R Lond B, 1999, 354: 33~50.
[71]  Macko S A, Engel M H, Andrusevish V,et al. Documenting the diet in ancient human populations through stable isotope analysis of hair[J]. Phil Trans R Soc Lond B, 1999, 354:65~76.
[72]  Richard M P, Hedges R E M, Molleson T I,et al. Stable isotope analysis reveals variations in human diet at the Poundbury Camp cemetery site[J]. Journal of Archaeology Science, 1998, 25:1 247~1 252.
[73]  Richard M P, Hedges R E M. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe[J]. Journal of Archaeology Science, 1999, 26:717~722.
[74]   Richard M P, Hedges R E M, Jacobi R,et al. Focus:Gough' s cave and sun hole cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic[J]. Journal of Archaeology Science, 2000, 27:1~3.
[75]  O' Connell T C, Hedges R E M. Investigations into the effect of diet on modern human hair isotopic values[J]. American Journal of Physical Anthropology, 1999, 108:400~425.

[1] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[2] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[3] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[4] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[5] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[6] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[7] 杨吉龙,韩冬梅,苏小四,肖国强,赵长荣,宋庆春,汪娜. 环境同位素特征对滨海岩溶地区海水入侵过程的指示意义[J]. 地球科学进展, 2012, 27(12): 1344-1352.
[8] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[9] 孙自永,程国栋,马瑞,甘义群. 雾水的D和 18O同位素研究进展[J]. 地球科学进展, 2008, 23(8): 794-802.
[10] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[11] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[12] 马金珠,黄天明,丁贞玉,W.M.Edmunds. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.
[13] 林田;郭志刚;杨作升. 类脂化合物单体碳稳定同位素在古气候环境研究中的意义[J]. 地球科学进展, 2005, 20(8): 910-915.
[14] 王红梅;谢树成;赖旭龙;黄俊华;杨娇艳. 分子地质微生物学研究方法述评[J]. 地球科学进展, 2005, 20(6): 664-670.
[15] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
阅读次数
全文


摘要