地球科学进展 ›› 2000, Vol. 15 ›› Issue (6): 717 -722. doi: 10.11867/j.issn.1001-8166.2000.06.0717

全球变化研究 上一篇    下一篇

气候变化对陆地生态系统第一性生产力的影响研究综述
彭少麟,侯爱敏,周国逸   
  1. 中国科学院华南植物研究所,广东 广州,510650
  • 收稿日期:1999-11-30 修回日期:2000-03-14 出版日期:2000-12-01
  • 通讯作者: 彭少麟(1956-),男,广东人,教授,主要从事产量生态学、恢复生态学的研究。
  • 基金资助:

    中国科学院“九五”重大项目“热带亚热带退化生态系统的恢复与重建”(编号:KZ951-B1-110);国家自然科学基金重大项目“中国东部陆地农业生态系统与全球变化相互作用的机理研究”(编号:39899370)和“中国热带亚热带几类主要生态系统功能过程受人类活动及全球变化影响的模拟及不同生态尺度的模型研究”(编号:39928007)以及广东省自然科学基金重大项目“广东主要农业生态系统与全球变化相互作用机理研究”(编号:980952)联合资助。

IMPACT OF CLIMATE CHANGE ON THE NET PRIMARY PRODUCTIVITY OF TERRESTRIAL ECOSYSTEM

PENG Shao-lin, HOU Ai-min, ZHOU Guo-yi   

  1. South China Institute of Botany,CAS,Guangzhou 510650,China
  • Received:1999-11-30 Revised:2000-03-14 Online:2000-12-01 Published:2000-12-01

气候变化对陆地生态系统第一性生产力(NPP)的影响是一个倍受关注的问题,目前从观测、实验和模拟等几个方面在不同层次上对这个问题进行了大量的研究。气候变化对生态系统NPP的影响取决于气候各因子及其组合变化的方向、生态系统与当前气候之间的关系,另外还要受养分及其它因子的影响。目前大量存在的NPP模型各有优缺点,模拟结果各异但有会聚的趋势。改进观测方法和理论、建立全球共享NPP数据库、进行大规模生态系统层次的实验研究和发展生态系统动态模型(DGVM)是未来一段时期研究的重点。

 Net primary productivity (NPP) of terrestrial ecosystem is of great importance to the sustainability of human being, thus, its response to the changing climate becomes a research focus.Observation, experimentation and simulation are three interrelated methods used to address this issue.Strong progress has been made, whilst many uncertainties still exist. The progresses in this field is reviewed. It also pointed out that, great effort should be made to collect systematic and long-term ecosystem data, to conduct experiments at the whole ecosystem level and to develop dynamic global vegetation model(DGVM),etc.

中图分类号: 

[1] IPCC. Common Questions about Climate Change. Second Assessment Report[M]. Cambridge: Cambridge University Press, 1996.
[2] Rosenzweig W L. Net primary productivity of terrestrial communities: prediction from climatological data[J]. Ameri Nat, 1968, 102: 67~74.
[3] Lieth H, Whittaker R H. Modeling the Primary Productivity of the World. Primary Productivity of the Biosphere[M].New York: Springer-Verlag, 1975.237~263.
[4] Webb W L, The primary productivity and bio-control of forest, grassland and desert ecosystems in the US [J].Natural Resoures Study ( A Special Issue on Foreign Ecological Researches),1985.1~31.
[5] Chen Z H, Wang B S, Zhang H D. The Productivity of the Lower Subtropical Evergreen Broad-leaved Forest [M].Guangzhou: Guangdong Higher Education Press, 1996.
[6] Steffen W L. Implication of global change for natural and managed ecosystems: a synthesis of GCTE and related research[J]. Global Change Report, 1997,29:6~7.
[7] Tang H P, Chen X D, Zhang X S,et al. A preliminary study on the biome classification and the response of biomes to global change along Northeast China Transect (NECT)[J].Acta Phytoecologica Sinica, 1988,22(5):428~433.
[8] Raich J W, Russell A Z, Vitousek P M. Primary productivity and ecosystem development along an elevational gradient at Mauna Loa, Hawaii[J]. Ecology, 1997, 78:707~721.
[9] Goetz. Scanning the globe with remote sensing[J]. BioScience, 1998,48(1):39~43.
[10] Prince S D. Satellite remote sensing of primary production:comparison of results for Sahelian grasslands 1981~1988[J]. Int J Remote Sens, 1991, 12(6):1 301~1 311.
[11] Ruimy A, Saugier B. Methodology for estimation of terrestrial net primary production from remotely sensed data[J]. J Geophysical Research, 1994, 97:18 515~18 521.
[12] Hobbs T J. The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia[J]. Int J Remote Sens, 1995, 16: 1 289~1 302.
[13] Paruelo J M, Epstei H E, Lauenroth W K,et al. ANPP estimates from NDVI for the central grassland region of the United States[J]. Ecology, 1997, 78(3):953~958.
[14] Lurin B, Rasool S I, Wolfgang Cramer,et al. Global terrestrial net primary productivity[J]. IGBP Newsletter,1994, 19:8~11.
[15] Olson D, Prince S. Global primary production data initiative update[J]. IGBP Newsletter, 1996, 27:11~13.
[16] Cramer W, Kicklighter D W, Bondeau A,et al. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results[R]. PIK Report, 1997.30.
[17] Sims P L, Singh J S, Lauenroth W K. The structure and function of ten western North American grasslands III. Net primary production, turnover and efficiencies of energy capture and water use[J]. Journal of Ecology, 1976,66:573~597.
[18] Lauenroth W K, Sala O E. Long-term forage production of North American short-grass steppe [J]. Ecological Applications, 1992, 2: 397~403.
[19] Abrams M D, Knapp A K, Hulbert L C. A ten year record of above-ground biomass in a Kansas tall-grass prairie:effects of fire and topographic position [J]. American J Botany, 1986, 73: 1 509~1 515.
[20] Briggs J M, Seastedt T R, Gibson D J. Comparative analysis of temporal and spatial variability in aboveground production in a deciduous forest and prairie [J]. Holarctic Ecology,1989, 12: 130~136.
[21] Overpeck J T, Rind D, Goldberg R. Climate-induced changes in forest disturbance and vegetation[J]. Nature, 1990,343(4):51~53.
[22] Liu S R, Xu D Y,Wand B. Effects of climate change on the productivity of the forests in China II:Modeling the primary productivity of Chinese forest[J]. Forest Research, 1994,7(4):425~430.
[23] Xu D Y, Guo Q S, Yan H,et al. A Study on the Impacts of Climate Change on Forests in China [M]. Beijing: Chinese Science Press, 1997.
[24] Zhang Z P, Peng S L, Sun G C,et al. The biomass and primary productivity of the forest ecosystems in Dinghushan[J]. Tropical and Subtropical Ecosystem, 1983,5:63~73.
[25] Lan T, Xia B, He S A,et al. Tree ring analysis on relation of Pinus massonsiana to climate factors[J]. Chinese Journal of Applied Ecology, 1994,5(4):422~424.
[26] Fritts H C. Recongstruction Large-scale Climatic Pattern from Tree-ring Data [M]. USA: The University of Arizona Press, 1991.
[27] Wang M, Bai S J, Tao D L,et al. Effects of rise in air-temperature on tree ring growth of forest on Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1995,6(2):128~132.
[28] Li J W. The Ecology and Management of Korean-Pine Mixed Forest in NE China [M]. Harbin: Northeast Forestry University Press,1997.
[29] Lin W H. The reaction of plant photosynthesis to elevated CO2concentration[J]. Acta Ecologica Sinica, 1998,18(5):529~538.
[30] Breemen N V, Jenkins A, Wright R F,et al. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX Project)[J]. Ecosystem, 1998, 1:345~351.
[31] Kaiser J. Environment: green grass, cool climate? [J].Science, 1996,1 274(5 293):1 610~1 611.
[32] Zhang F C. The effects of climate change on the biotemperature of wooden plants in China [J]. Acta Geographica Sinica, 1995, 50(5):402~409.
[33] Li Q S. Effects of climate change on agroecological systems in the Yangtze Delta[J]. Acta Ecologica Sinica, 1994,14(3):295~299.
[34] Wright R F. Effects of increased carbon dioxide and temperature of runoff chemistry at a forested catchment in Southern Norway (CLIMEX Project) [J]. Ecosystems,1998, 1:216~225.
[35] Melillo J M. Warm, Warm on the range[J]. Science, 1999,1283 (5399): 183~184.
[36] Kang S Z, Cai H J, Liang Y L,et al. On the study of the effects of elevated CO2concentration on the canopy temperature, evapotranspiration and soil water condition of spring wheat[J]. Acta Ecologica Sinica, 1997,17(4):412~417.
[37] Tang Z C. On the study of drought ecophysiology in plants[J]. Acta Ecologia Sinica, 1983,3(3):196~203.
[38] Shan L, Xu M. Water-saving agriculture and its physio-ecological bases[J]. Chinese Journal of Applied Ecology,1991,2(1):70~76.
[39] Sun G C. Recovery of vegetation in subtropical monsoon evergreen broad-leaved forest I. Principle: Response of photosynthesis of plants on different disturbed forestlands to environmental factors[J]. Chinese Journal of Applied Ecology, 1994,5(1): 37~42.
[40] Xing J H, Chen K, Ma S S. Effects of air temperature and relative humidity on leaf water potential and leaf elongating rate of some plants[J]. Acta Phytoecologica et Geobotanica Sinica, 1989,13(1):49~54.
[41] Ziska L H, Bunce J A. Direct and indirect inhibition of single leaf respiration by elevated CO2concentrations: Interaction with temperature[J]. Physiol Plant, 1990,90:130~138.
[42] Ziska L H, Bunce J A. Increasing growth temperature reduces the stimulation effect of elevated CO2on photosynthesis or biomass in two perennial species [J].Physiol Plant, 1994, 91:183~190.
[43] Prentice C. Process and production[J]. Nature, 1993, 363(20): 383~384.
[44] Liang N, Maruyama K. Interactive effects of CO2enrichment and drought stress on gas exchange and water-use efficiency in Alnus Firma [ J ]. Environmental and Experimental Botany, 1995, 35(3):353~361.
[45] Meier, Fuhrer J. Effect of elevated CO2on orchard grass and red clover grown in mixture at two levels of nitrogen or water supply[J]. Environmental and Experimental Botany, 1997,38:251~262.
[46] Wei C M, Kong G H, Lin Z F. Effect of elevated CO2 concentration on leaf regime of subtropical tree seedlings[J]. Chinese Journal of Applied Ecology, 1997, 8(1): 12~16.
[47] GCTE. Elevated CO2Network: Current Projects, GCTE Online Reports [EB/OL]. URL: http://www. gcte. org/publications/publications.html,1999.
[48] Melillo J M, McGuire A D, Kicklighter D W,et al. Global climate change and terrestrial net primary production[J].Nature, 1993, 363 (20): 234~240.
[49] Churkina G, Running S W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes[J].Ecosystems, 1998,1:206~215.
[50] Bergh J. Climatic and Nutritional Constraints to Productivity in Norway Spruce. Acta Universitatis Sueciae, Silvestria 37.Ph D Thesis, Swedish University of Agricultural Sciences,1997.
[51] VEMAP Members. Vegetation/ ecosystem modeling and analysis project: Comparing biography and biogeochemistry models in a continental-scale of terrestrial ecosystem responses to climate change and CO2doubling[J]. Global Biogeochemical Cycles, 1995, 9: 407~437.
[52] Steffen W L. Global change and terrestrial ecosystem:integrative activities[J]. Global Change Report, 1995, 95:6~7.
[53] Zhou G S, Zhang X S, Gao S H,et al. Experiment and modeling on the responses of Chinese terrestrial ecosystems to global change[J]. Acta Botanica Sinica 1997,39(9):879~888.
[54] Xiao X M, Wang Y F, Chen Z Z,et al. Dynamics of primary productivity and soil organic matter of typical steppe in the Xilin River Basin of Inner Mogolia and their response to climate change[J]. Acta Botanica Sinica, 1996,38:45~52.
[55] Li D Q, Sun C Y, Zhang X S. Modeling the net primary productivity of the natural potential vegetation in China[J].Acta Botanica Sinica, 1998,40(6):560~566.
[56] Liu S R, Guo Q S, Wang B,et al. Prediction on the responses of the productivity of Chinese forest to global change[J]. Acta Ecologica Sinica, 1998,18(5):478~483.

 

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[7] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[8] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[9] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[10] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[11] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[12] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[13] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[14] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[15] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
阅读次数
全文


摘要