地球科学进展 ›› 2000, Vol. 15 ›› Issue (5): 565 -570. doi: 10.11867/j.issn.1001-8166.2000.05.0565

综述与评述 上一篇    下一篇

空间GPS无线电掩星反演大气参数方法及其应用
蒋 虎,黄 王成,严豪健   
  1. 中国科学院上海天文台,上海 200030
  • 收稿日期:1999-12-07 修回日期:2000-03-06 出版日期:2000-10-01
  • 通讯作者: 蒋虎(1969-),男,浙江省东阳市人,助理研究员,主要从事空间飞行器精密定轨研究。
  • 基金资助:

    国家自然科学基金重点项目“空间天文技术监测和综合研究大气与海洋变化”(编号:19833030)和中国科学院“九五”重大项目“地球各圈层相互作用的现代天文学研究”(编号:KJ951-1-304)联合资助。

INVERSION OF TERRESTRIAL ATMOSPHERIC PARAMETERS USING SPACEBORNE GPS RADIO OCCULTATION AND ITS APPLICATION

JIANG Hu,HUANG Cheng,YAN Hao-jian   

  1. Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China
  • Received:1999-12-07 Revised:2000-03-06 Online:2000-10-01 Published:2000-10-01

给出了空间无线电掩星反演大气参数的原理及其误差估计方法,介绍了国内外在该领域的研究进展。并针对该技术的一些特点,指出了若干尚需解决的问题。

 The principle and error assessments of the application of spaceborne GPS radio occultation to terrestrial atmosphere inversion are reviewed and the recent developments on this discipline are summarized. Based on the established theory and data from GPS/MET mission, researchers from University Corporation for Atmosphere Research in US have presented their results that the accuracy of GPS occultation inversion for atmospheric temperature is averagely one Kelvin between 5 km and 40 km altitude. If temperature is obtainable from an independent source, water vapour pressure profiles can be derived, which is quite interesting to meteorologists; however it is still tentative to derive water vapor profile because before reliable results for water vapor profiles are attainable, the multipath effect on signal, which is difficult to model, should be mostly removed. Currently, inversion accuracies suffer much from signal to noise ratio limiting, so inflight GPS receivers for obtaining lower signal to noise ratio GPS signal are required in order to get more effective data for inverting atmospheric parameters. As far as the characteristics of the technique in question are concerned, we raise some problems which remain to be settled. They include: how to narrow and interpret the differences of temperature derived by GPS occultation method and routine technique, such as Radiosonde; how to get atmospheric parameters in the lower atmosphere, say, under 5 km altitude, and in the upper atmosphere, say, above 40 km; how to decorrelate temperature and water vapour pressure so as to get reliable water vapour pressure profiles; how to take into account the ignored “higher-order”term, which can be expressed as the integral of the dot-product between gradient of refractivity and velocity of GPS signal with respect to the geocenter, integrating along the signal propagation path; how to overcome the singularity of integrand at the lower integration limiting when the Abel transform is adopted to produce the refractivity profiles.

中图分类号: 

[1] Rius A, Ruffini G, Cucurull L. Improving the vertical resolution of ionospheric tomography with GPS occultations[J].Geophys Res Lett, 1997,24: 2 291~2 294.
[2] Rocken C, Anthes R, Exner M,et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Jour Geophys Res, 1997, 102: 29 849~29 866.
[3] Melbourne W, Davis E, Duncan C,et al. The application of space borne GPS to atmospheric limb sounding and global change monitoring [J]. JPL Publ, 1994,18:147.
[4] Bassiri S, Hajj G A. Higher-order ionospheric effects on the GPS observables and means of modeling them[J]. Manuscripta Geodetica, 1993, 18: 280~289.
[5] Ware R, Exner M, Feng D,et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results[J]. Bull Amer Met Soc, 1996,77: 19~40.
[6] Haines B J, Bar-Sever Y E. Monitoring the TOPEX microw ave radiometer with GPS: stability of columnar water vapor measurements [J]. Geophys Res Lett, 1998, 25: 3 563~3 566.
[7] Leroy S. The measurement of geopotential heights by GPS radio occultation[J]. Geophys Res, 1997,102: 6 971~6 986.
[8] Hajj G A, Romans L J. Ionospheric electron density profiles obtained with the GPS: results from the GPS/MET experiment [J]. Radio Science, 1998, 33(1): 175~190.
[9] Lemoine F G, Pavis N K, Kenyon S C,et al. New high-resolution model developed for Earth' s gravitational field, EOS[J]. Trans Amer Geophys Union, 1998, 79: 113~118.
[10] Kuo Y H, Zou X, Huang W. The impact of GPS data on the prediction of an extratropical cyclone: An observing system simulation experiment [J]. J Dyn Atmos Ocean, 1997,27:439~470.
[11] Yan Haojian, Huang Dong, Huang Cheng. Sequential atmospheric profiles near a fixed location derived from GPS-LEO occultation measurements [J]. Geophys Res Lett, 1999, 26:451~454.
[12] 胡国荣.星载GPS低轨卫星定轨理论研究(博士论文摘要)[J].测绘学报,1999,3:281.
[13] Bertiger W I, Bar-Sever Y E, Christensen E J,et al. GPS precise tracking of topex/poseidon: results and implications[J]. J Geophys Res, 1994, 99: 24 449~24 464.
[14] 沐定夷,胡鸿钊著.数值分析[M].上海:上海交通大学出版社,1994.220.

[1] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[2] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[3] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[4] 郭恺. 基于局部层析的 TTI各向异性参数初始建模方法研究[J]. 地球科学进展, 2019, 34(10): 1060-1068.
[5] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[6] 李爱农, 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151.
[7] 居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1105-1110.
[8] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[9] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[10] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[11] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[12] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[13] 王振宇, 杨勤勇, 李振春, 胡光辉, 尹力, 王杰. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1138-1148.
[14] 刘旸,蔡波,班显秀,袁健,耿树江,赵姝慧,李帅彬. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.
[15] 解国爱,王宗秀,张庆龙,吕赟珊,邹旭. 江西永平铜矿区古构造应力场与构造演化[J]. 地球科学进展, 2013, 28(5): 608-617.
阅读次数
全文


摘要