地球科学进展 ›› 1997, Vol. 12 ›› Issue (3): 217 -223. doi: 10.11867/j.issn.1001-8166.1997.03.0217

综述与评论 上一篇    下一篇

GPS无线电掩星技术监测地球大气
黄栋,黄城,李金岭,严豪健,虞南华   
  1. 中国科学院上海天文台
  • 收稿日期:1996-10-08 修回日期:1996-11-11 出版日期:1997-06-01
  • 通讯作者: 黄栋,男,1971年1月出生,实习研究员,主要从事星载GPS卫星定轨及其应用的研究.

MONITORING THE EARTH' S ATMOSPHERE WITH GPS RADIO OCCULTATION

HUANG Dong,HUANG Cheng,LI Jinling,Yan Haojian,YU Nanhua   

  1. Shanghai Observatory,The Chinese Academy of Science,Shanghai  200030
  • Received:1996-10-08 Revised:1996-11-11 Online:1997-06-01 Published:1997-06-01

GPS无线电掩星技术是从行星掩星(飞行器)探测行星大气[1~3]的遥感技术发展而来的。1995年4月3日小型卫星MicroLab1的发射升空,标志着以GPS无线电掩星建议为基础GPS/MET计划纳入了正式实验阶段。实验结果证实了GPS无线电掩星技术在探测地球大气方面潜在的科学价值与实用意义。简要系统地介绍了利用GPS无线电掩星技术监测地球大气折射率、温度、气压和水蒸汽丰度等物理参量廓线分布的基本原理、主要误差源和空间分辨率,以及数字模拟结果和初步实验结果,并分析了GPS无线电掩星技术在监测全球气候变化和提高数值天气预报精度等方面的潜在贡献。

GPS radio occultation technique was developed from the application of remote sensing technique in planet atmospheric limbing sounding. based on the seggestion of GPS radio occultation,GPS/MET proposal comeinto a formal experiment stage with the launch of satellite MicroLabl in Arp. 3,1995. The results from the experiment has proved the potential scientific value and practical significance of this technique in earth atmospheric limb sounding. In this paper,it is briefly and systematically introduced on how to apply the technique of GPS radio occultation to measure and monitor the vertical profile of the global atmospheric refractive index,temperature,pressure and moisture.  Preliminarily results from simulations and experiments are also outlined. Some potential contributions of the GPS radio occultation technique to the monitoring of the global climates change and to the improvement of the weather analysis and prediction accuracy.

中图分类号: 

1 Fjeldbo G, Eshleman V R. The atmosphere of Mars analyzed by integral inversion of the mariner IV occultation data. Planet Space Sci,1968,16:1035-1059.
2 Fjeldbo Astron G, Kliore A J. The neutral atmosphere of venus as studied with the mariner V radio occultation experiments. Astron J,1971,76:123-140.
3 Tyler L G ,Radio propagation experiments in the outer solar system with voyager. Proc IEEE,1987,75:1404-1431.
4 Yuan L L, Anther R A, Ware R H,et al. Sensing climate change using the global positioning system,JGR, 1993,98:14925-14937.
5 Melbourne W  G,Davis E S, Duncan C B, et al. The application of spaceborne GPS to atmospheric limb sounding and global change monitoring.  JPL Publication 94-18.  California:Pasadena,1994.
6 Kursinski E R,Hajj G A,Hardy K R. Temperature or moisture profiles from radio occultation measurements. Proc the 8th 5ymp on Meterological Observations and Instrumentation. Amer Internat Soc for Optical Eng CA Anaheim,1993a,J153-158.
7 Kursinski E R,Hajj G A,Hardy K R. Atmospheric profiles from radio occultation measurements of GPS satellites,SPIE Conference.  Florida,Orlando, 1993b. 116-127.
8 Hajj G A, Kursinski E R,Bertiger W I, et al. Assessment of GPS occupations for atmospheric profiling. Proc of the 7th Conf on Satellite Meteorology and Oceanography, Paper J4 9. American Meteorological Society, CA:Monterey,1994.
9 Gaposchkin E M,Coster A J.GPS L1-L2 bias determination.  Technical Report 971.  Lincoln Laboratory, Massachusetts Institute of Technology,Massachusetts,Lenington,1993.
10 Hajj G A,Ibanez-Meter R,Kursinski E R,et al. Imaging the onosphere with the global positioning system. International Journal of Imaging Systems and Technology, 1994,5:174-184.
11 Kursinski E R,Hajj G A,Hardy K R. Observing tropospheric water vapor by radio occultation using the global positioning system.  Geophisical Research Letters,1995,22:2365-2368.
12 Kelier J B. Geometrical theory of diffraction. J Opt 5oc Am,1962,52:116-130.
13 Hardy K R,Hajj G A,Kursinski E R. Accuracies of atmospheric profiles obtained from GPS ocultations,International Journal of Satellite Communications,1994,12:463-473.
14 Hardy K R,Hinson D P,Tyler G L,et al. Atmospheric profiles from active space-based radio measurements. Proc of the 6th Conference on Satellite Meteorology and Oceanography. Atlanta,January 5-10,1992.
15 Lindal G F. The atmosphere of Neptune:an analysis of radio occultation data acquired with Voyager 2.  Astron J,1992,103:967-982.
16 Hajj G A,Kursinski E R,Bertiger W I,et al. Initial results of GPS-LEO occultation measurements of Earth atmosphere obtained with the GPS-MET experiment. The Proceedings of the IAG Symposium G1 "GPS Trends in Precise Terrestrial,Airborne,and Spaceborne Applications", IUGG XXI General Assembly. Colorado,Boulder, July 2-14,1995.
17 Kursinski E R, Hajj G A,Bertiger W I,et al. Initial results of radio occultation observations of Earth's atmosphere using the GPS. Science,1996,271:1107-1109.
18 Mannucci A J,Wilson B D, Edwards C D. A new method for monitoring the earth's ionospheric total electron content using the GPS global network,In:Proceedings of the ION GPS 93 Conference. Utah;Salt Lake City, Institute of Navigation, 1993. 1323-1332.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[9] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[10] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[11] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[12] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[13] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[14] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[15] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
阅读次数
全文


摘要