地球科学进展 ›› 1996, Vol. 11 ›› Issue (2): 198 -203. doi: 10.11867/j.issn.1001-8166.1996.02.0198

所属专题: 青藏高原研究——青藏科考虚拟专刊

学术研究动态 上一篇    下一篇

青藏高原上新世以来植被与气候研究进展
唐领余,沈才明   
  1. 中国科学院南京地质古生物研究所 南京 210008
  • 出版日期:1996-03-01
  • 通讯作者: 唐领余,男,1938年12月出生,研究员,主要从事第四纪孢粉学、晚新生代古植被与古气候研究.
  • 基金资助:

    国家“八五”攀登计划“青藏高原形成演化、环境变迁与生态系统研究”(编号:029-02-01)及国家自然科学基金资助项目“西藏东南部晚更新世以来东亚及印度洋季风气候史气项目编号:49371068).

PROGRESSES IN THE STUDY OF VEGETATION AND CLIMATE CHANGES SINCE PLIOCENE IN THE QINGHAI-XIZANG PLATEAU

Tang Lingyu;Shen Caiming   

  1. Nanjing Institute of Geology and Paleontology, Academia Sinica,Nanjing 210008
  • Online:1996-03-01 Published:1996-03-01

由于青藏高原的特殊大气环流形势,夏半年受印度洋热带海洋季风──西南季风控制,向高原内部、尤其西北部,水份逐渐减弱;冬半年高原面受干冷西风环流影响,致使气候寒冷干燥。从而使高原植被由东南向西北发生递交。上新世早、中期在冈底斯山和念青唐古拉山以南地区发育常绿硬叶林,而北部则生长山地常绿针叶林,到更新世早期藏南以亚热带针阀混交林为主,北部出现灌丛和草原植被。自更新世晚期以来,青藏高原除东南部及喜马拉雅山以南的一部分地区保留部分亚热带针阔混交林外,大部分地区为高山草甸、灌丛草原或荒漠草原。 

 Vegetation and climate changes since Miocene were studied preliminarily in terms of palynological and paleobotanical records in the Qinghai -Xizang plateau in Miocene,subtropical alpine sclerophyllous oak forest existed in the most parts of Xizang,espicially southern Xizang. Meanwhile,the altitudinal zones of vegetation appeared and the alpine shrubbery was found firstly.The climatic characteristic was middle moist with annual temperature at above 2~ 10℃. In Early and Middle Pliocene,due to that rising mountains gradually hindered the India Ocean Monsoon’s entering,the subtropical alpine sclerophyllous oak forest distributing widely in Miocene moved southward,main vegetation was evergreen sclerophyllous oak-cedra forest found in the regions south to the Gangdisi and Nianqingtanggula Mt., where the annual temperature was above 10℃ higher than today estimated by its modern distributing altitude, montane evengreen coniferous forest existed in the most of regions north to Gangdisi and Nianqingtanggula Mt, where the annual temperature was about 7℃.Since Late Pliocene,evergreenoak and cedra decreased, deciduous and herberous elements increased, main vegetation was subtropical mixed coniferous,and broadleaved forest in the north slopes of the Himalaya Mt, and regions south to Nianqingtanggula Mt., where the temperature Was 5.2~8.1℃ higher than present,in the regions north to the Himalaya ’s north slopes and Nianqingtanggula Mt. ,drought became worse gradually, which resulted in appearence of shrubbery and steppe,where annual temperature was about 4 ℃ higher than today. Drought was serious since Late Pleistocene in the interior of the Plateau,alpine shrubberysteppe was found in the most part of Xizang, subtropical mixed coniferous and broadleaved forest,subtropical evergeen season rainforest and rainforest only existed in the Zhangmu,Kada,Yadong,Jilong, Cayu and Mutuo in the south slopes of the Himalaya Mt.,Holocene vegetation was similar to the Present. 

[1]中国科学院青藏高原综合科学考察队.西藏植被.北京:科学出版社,1988.
[2]沈才明,唐领余.青藏高原南部上新世花粉植物群及其古气候.地层学杂志,1992,16(4);264 - 269.
[3]宋之琛,刘金陵.西藏南木林第三纪孢粉组合.西藏古生物(第五分册)·北京.科学出版社,1982. 153-164.
[4]徐仁,陶君蓉,孙湘君.希夏邦马峰高山栋化石层的发现及其在植物学和地质学上的意义.植物学报,1973.15(1):103-119.
[5]黄赐璇,李炳元,张青松,等.西藏亚汝雄拉达涕古湖盆湖相沉积的时代和孢粉分析.西藏古生物(第一分册).北京:科学出版社,1980. 97-106.
[6]吴玉书,于浅黎.西藏高原含三趾马动物群化石地点饱粉组合及其意义.西藏古生物(第一分册).北京:科学出版社,1980. 76-83.
[7]曹流.西藏普兰涕松上新世孢粉植物群.古生物学报,1982.21(4):469- 483.
[8]李文猗,梁玉莲.札达盆地上新世湖相沉积的饱粉分析.西藏第四纪地质.北京:科学出版社,1983. 132-144.
[9]黄赐璇,梁玉莲.藏北高原北部地区湖相沉积的饱粉分析.西藏第四纪地质.北京:科学出版社,1983. 153-161.
[10]郑亚惠.吉隆盆地沃马组袍粉组合.西藏第四纪地质·北京:科学出版社,1983. 145-152.
[11]周昆叔,陈硕民,叶永英,等.根据饱粉分析的资料探讨珠穆朗玛峰地区第四纪古地理的一些问题.珠穆朗玛峰地区科学考察报告(1966-1968).第四纪地质.北京:科学出版社,1976. 79-92.
[12]李文猗.青藏高原南部几个地点上新世饱粉组合及古地理间题的讨论.西藏第四纪地质.北京:科学出版社,1983. 162-166.
[13]黄赐旋,梁玉莲,曲松.邛多江盆地早更新世饱粉组合及其古地理意义.西藏第四纪地质.北京:科学出版社,1983. 167-171.
[14]李文猗,李家英,梁玉莲.西藏曼冬错硅藻土中的饱粉和硅藻分析.西藏第四纪地质.北京:科学出版社,1983. 172-177.
[15]郑绵平,向军,魏新俊,等.青藏高原盐湖.北京:北京科学技术出版社,1989. 1-351.
[16]沈才明,唐领余.青藏高原南部第四纪饱粉植物群及古气候.地层学杂志.1994.18(2):124 - 131.
[17]Jarvis D I. Pollen Evidence of changing Holocene Monsoon climate in Sichuan Province, China. Quaternary Research,1993,39:325-337.
[18]李旭,刘金陵.四川螺髻山全新世植被和环境变化.地理学报,1988.43: 44- 51.
[19]杜乃秋,孔昭宸,山发寿.青海湖QH85-14C钻孔饱粉分析及其古气候古环境的初步探讨.植物学报,1989,31(10):803-814.
[20]孙湘君,杜乃秋,陈因硕,等.西藏色林错湖相沉积物的花粉分析.植物学报,1993,35(12):943 - 950.
[21]汪佩芳,夏玉梅,王曼华.西藏南部全新世泥炭饱粉组合及自然环境演化的探讨.地理科学,1981,1(2):144 -152.
[22]黄赐璇,王燕如,梁玉莲.试从分析论西藏中南部全新世自然环境的演变.西藏第四纪地质.北京:科学出版社,1983. 179-192.
[23]Elese Van Campo and Francoise Gasse. Pollen and Diatom-inferred climatic and Hydrological Changes in Sumxi Co Basin (Western Tibet) Since 13000 a BP. Quaternary Research,1993,39:300-313.
[24]Gasse F,Arnold M,Fontes J C, Fort M,E Gibert,Huc A,Li Bingyan,Li yuanfang, Liu Qing, Melieres F, Van Campo E,Wang Fubao $c Zhang Qingsong.  A 13000-year climate record from western Tibet.  Nature,  1991,353(24):742-745.
[25]Kutzbach J E and Gugtter P J.  (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years.  Journal of Atmospheric Sciences, 1993,43:1726-1759.
[26]Porter S C. An Z S and Zhang H B. Cyclic guaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the QinLing Shan,central China. Quaternary Research,1992, 38.
[27]Bradley R S. Quaternary paleoclimatology. Allen&Unwin Boston,1985. 289-317.
[28]Peterson G M. Recent pollen spectra and tonal vegetation in the western USSR. Quaternary Science Reviews, 1983,2:281-321.
[29]任国玉.国外末次冰期极盛期以来陆地植物花粉研究主要进展.地球科学进展, 1994.9(2) :59-63.
[30]Birks H J B & Gordon A D著.第四纪花粉分析的数值方法.沈才明,唐领余译.广州:东南大学出版社,1992. 1-239.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[11] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[12] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[13] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[14] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[15] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
阅读次数
全文


摘要