地球科学进展 ›› 1995, Vol. 10 ›› Issue (3): 254 -257. doi: 10.11867/j.issn.1001-8166.1995.03.0254

所属专题: 青藏高原研究——青藏科考虚拟专刊

干旱气候变化与可持续发展 上一篇    下一篇

大洋钻探与青藏高原
汪品先   
  1. 同济大学海洋地质开放实验室  上海  200092
  • 收稿日期:1995-02-21 出版日期:1995-06-01
  • 通讯作者: 汪品先

ODP AND QINGHAI/XIZANG(TIBETAN) PALTEAU

Wang Pinxian   

  1. Laboratory of Marine Geology,Tongji University,Shanghai  200092
  • Received:1995-02-21 Online:1995-06-01 Published:1995-06-01

青藏高原的隆升历史在海洋沉积中得到记录。印度洋的两大深海沉积扇——孟加拉扇与印度河扇(总面积4×106km2)——便是第三纪中期以来喜马拉雅山脉上升剥蚀的产物。南海北部陆架的莺歌海盆地中巨厚的海相沉积(仅第四系便达2000m )系来自红河三角洲,也应是青藏高原隆升的结果。另一方面,青藏高原隆升可能是全球新生代变冷和东亚季风兴起的原因,也是世界大洋化学成分和沉积速率显著变化的原因之一。上述种种,都有深海钻探和大洋钻探的发现作为根据。因此,如能将青藏高原的调查研究与大洋钻探结合起来,就可望为揭示全球环境变迁的机理作出突破性的贡献。

    The uplift history of the Tibetan Plateau has been recorded in marine deposits. The two huge deep-sea sediment fans in the Indian Ocean,i: e.,the Bangal Fan and the Indus-River Fan with a total area over 4 million square kilometres,are products of the uplift and erosion of the Himalayas since the middle Tertiary. The enormous sequence of marine deposits in the Yinggehai Basin on the northern shelf of the South China Sea where the Quaternary along reaches 2000m in thickness,is related to the Red River delta and has obviously again resulted from the uplift of the Tibetan Plateau.
    On the other hand, the Plateau's uplift may be the cause or one of the causes of the Cenozoic global cooling and the onset of the Asian monsoon system,as well as the remarkable changes in chemical composition and sedimentation rate of the global ocean.
    All the above discussions are based on discoveries by the DSDP/ODP drillings.Therefore,a research endeavor combining the Tibetan Plateau investigations with the Ocean Drilling Program will be most promisting in breaking through to reveal the mechanism behind the global environmental changes.

[1] Johnson M R W. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts. Journal of the Geological Society,London,1994,151(2):217-220.
[2] Stow D A V et al. Sediment facies and processes on the Bengal Fan,Leg 116. Proc Ocean Drilling Program,Scientific Results.1990,116:337-396.
[3] Prell W L, Nittouma N et al. Site 720, Proceedings of the Ocean Drilling Program. Initial Results.1989,117:157-195.
[4] Cochran J R. Himalayan uplift,sea level,and the record of Bengal Fan sedimentation at the ODP Leg 116 sites. Proc Ocean Drilling Program, Scientific Results. 1990,116:397-414.
[5] Klootwijk C T et al. Neogene evolution of the Himalayan-Tibetan region:constraints from ODP Site 758 northern Ninetyeast Ridge;bearing on climate change. Palaeo Palaeo Palaeo,1992,95:95-110.
[6] Weser O E. Sedimentological aspects of strata encountered on Leg 23 in northern Arabian Sea. DSDP Initial Reports,1974,23:503-523.
[7] 汪品先,夏伦煜,王律江,成鑫荣.南海西北陆架的海相更新统下界.地质学报,1991, (2) :176-187.
[8] Davies T A,Hay W W.southam J R and Worsley T R. Estimates of Cenozoic oceanic sedimentation rates. Science, 1977,197:53-55.
[9] Elderfield H. Strontium isotope stratigraphy. Palaeo Palaeo Palaeo,1986, 57:71-90.
[10] Hodell D A. Woodruff F. Variations in the strontium isotopic ratio of seawater during the Miocene:stratigraphic and geochemical implication.Paleoceanography,1994,9(3):405-426.
[11] 同济大学海洋地质系.古海洋学概论.上海:同济大学出版社,1989. 316pp.
[12] Miller K G,Fairbanks R G and Mountain G S. Tertiary oxygen isotope synthesis,sea level history,and continental margin erosion. Paleoceanography,1987,2(1):1-19.
[13] Shackleton N J, Kennett J P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation:oxygen and carbon isotopic analyses in DSDP sites 277,279,281. DSDP Initial Rerports. 1975,29:743-755.
[14] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. Jour Geoph Res,1989,94(D15):18379-18391.
[15] Ruddiman W F, Kutzbach J E. Plateau uplift and climate change. Scientific American,1991,March:42-49.
[16] Kutzbach J E,Guetter P J,Ruddiman W F and Prell W L. Sensativity of climate to late Cenozoic uplift in Southern Asia and the American West:numerical experiments. Jour Geoph Res,1989,94(D15):18393-18407.
[17] Wang Pinxian. Neogene stratigraphy and paleoenvironments of China.Palaeo Palaeo Palaeo, 1990,77:315-334.
[18] Wang Pinxian. Progress in Late Cenozoic palacoclimatology in China: a brief review. In: Whyte R O (ed).The Evolution of the East Asian Environment .Hong Kong Univ,1984,1:165-187.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[9] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[10] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[11] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[12] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[13] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[14] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[15] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
阅读次数
全文


摘要