Please wait a minute...
img img
高级检索
地球科学进展  2004, Vol. 19 Issue (5): 699-705    DOI: 10.11867/j.issn.1001-8166.2004.05.0699
发展战略论坛     
浅谈固体地球科学与地球系统科学
郭正堂1,2;吴海斌1
中国科学院地球环境研究所,陕西 西安 710075;中国科学院地质与地球物理研究所,北京 100029
ON THE SOLID EARTH SCIENCE AND 
EARTH SYSTEM SCIENCE
GUO Zheng-tang 1,2,WU Hai-bin1
1.Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075,China;2.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
 全文: PDF(69 KB)  
摘要:

地球科学在20世纪的诸多进展中,对后来科学发展具有深远影响的基本认识之一是地球演化的行为具有整体性,其不同的圈层确实通过多种途径相互作用,且人类活动已成为地球演化的重要营力之一。这些认识导致地球系统科学思想的产生和发展,并使不同圈层相互作用的过程和机理、人与环境的相互作用研究成为21世纪基础科学研究的前沿。地球系统科学强调地球不同圈层、不同单元相互作用的整体性和关联性,因而科学研究必须从"整体地球系统"的视野出发,但研究过程又必须从关键区域入手。我国是地球系统科学研究的关键地区之一,未来研究应立足地域优势和特色,攻克全球性重大科学问题,解决社会对地球科学的知识需求。

关键词: 固体地球科学地球系统科学圈层相互作用中国    
Abstract:

The advances during the 20th century in the field of Solid Earth Science have numerously contributed to the emergence of Earth System Science (ESS). ESS aims at understanding the Earth as a synthetic system driven by complex internal and external processes, with special emphasis given to the interactions of geosphere, atmosphere, hydrosphere and biosphere. It should answer a series of questions about the Earth, such as (1) How the Earth system evolved in the past? What are the driving forces and mechanisms of these changes? What occurs presently in the system with numerous human disturbances and what will be its future? The fundamental of the Earth System Science is to view the Earth as a whole system, but approaches of ESS need to start by key regions. China is located within a crucial region for understanding the basic Earth system processes. The study of ESS also meets China's social requirements as it is likely faced with most serious natural environmental and resource problems. We suggest a number of issues relevant to the traditional Solid Earth Science, which appear to be of importance in the ESS studies in China.

Key words: Solid Earth Science    Earth System Science    Interactions of geosphere    Atmosphere    Hydrosphere and biosphere    China.
收稿日期: 2004-06-01 出版日期: 2004-10-01
:  P31   
通讯作者: 郭正堂(1964-),男,研究员,主要从事新生代环境与全球变化研究.     E-mail: E-mail:ztguo@mail.igcas.ac.cn
作者简介: 郭正堂(1964-),男,研究员,主要从事新生代环境与全球变化研究.E-mail:ztguo@mail.igcas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭正堂
吴海斌

引用本文:

郭正堂;吴海斌. 浅谈固体地球科学与地球系统科学[J]. 地球科学进展, 2004, 19(5): 699-705.

GUO Zheng-tang,WU Hai-bin. ON THE SOLID EARTH SCIENCE AND 
EARTH SYSTEM SCIENCE. Advances in Earth Science, 2004, 19(5): 699-705.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2004.05.0699        http://www.adearth.ac.cn/CN/Y2004/V19/I5/699

[1]中国科学院地学部“中国地球科学发展战略”研究组.地球科学:世纪之交的回顾与展望[M]. 济南:山东教育出版社,2002.
[2]Tackley P J. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory[J].Science, 2000, 288: 2 002-2 007.
[3]Buffett B A. Earth's core and the geodynamo[J].Science, 2000, 288: 2 007-2 012.
[4]Flower B P, Kennett J P. Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project site 588A, southwest Pacific[J].Palaeoceanography, 1993, 8: 811-843.
[5]Ruddiman W F, Prell W L, Raymo M E. Late Cenozoic uplift in southern Asia and the American West: Rational for general circulation modeling experiments[J].Journal of Geophysical Research, 1989, 94:18 379-18 391.
[6]Raymo M E, Ruddiman W F, Froelich P N. The influence of late Cenozoic mountain building on oceanic geochemical cycle[J].Geology, 1988, 16: 649-653.
[7]Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2~4 Ma ago due to the influence of climate change on erosion rates[J].Nature, 2001, 410: 891-897.
[8]Lamb S, Davis P. Cenozoic climate changes as a possible cause for the rise of the Andes[J]. Nature, 2003, 425: 792-797.
[9]Broecker W S. Paleocean circulation during the last deglaciation: A bipolar seesaw?[J].Paleoceanography, 1998, 13: 119-121.
[10]Stocker T F. Past and future reorganizations in the climate system[J].Quaternary Science Reviews, 2000, 19: 301-319.
[11]Wignall P B. Large igneous provinces and mass extinction[J].Earth Science Reviews,2001, 53: 1-33.
[12]Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in the northern Pakistan[J].Nature, 1989, 342: 163-166
[13]Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as an indictor of global ecological change in the late Miocene[J].Nature, 1993, 361:344-345.
[14]Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2concentrations and the expansion of C4 grasses[J].Science, 1999, 285: 876-879.
[15]Van derMerve N JTschauner HC4 plants and the development of human societies[A]. In: Sage R F, Monson R K,eds.C4 Plant Biology[C].San Diego:Academy Press, 1999.509-538.
[16]Shackleton N J. A new Late Neogene time scale: Application to Log 138 sites[J].Proceeding ODP, Science Results, 1995, 138: 73-91
[17]Kashiwaya K, Ochiai S, Sakai H, et al. Orbital-related long-term climate cycles revealed in a 12 Ma continental record from Baikal[J].Nature, 2001,410:71-74.
[18]Bond G, Kromer B, Beer J, et al. Persistent solar influence on north Atlantic climate during the Holocene[J].Science, 2001, 294: 2 130-2 136.
[19]Guydo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 ka[J].Nature, 1999, 399: 249-252.
[20]Alvarezl W, Alvarez W M, Asaro F,et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J].Science, 1980, 208: 1 095-1 108.
[21]IPCC. Climate Change: The IPCC Scientific Assessment[M]. Cambridge: Cambridge University Press,2000
[22]Chen Panqin(陈泮勤), Ma Zhenhua(马振华), Wang Genchen(王庚辰) translated. Earth System Science[M]. Beijing: Seismetic Press, 1992(in Chinese).
[23]赵生才.固体地球科学的研究现状和趋势[J].地球科学进展,2000,15(6):757-759.
[24]Martin J H. Glacial-interglacial CO2 changes: The iron hypothesis[J].Paeoceanography, 1990, 5: 1-13.

[1] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[2] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[3] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[4] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[5] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[6] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[7] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[8] 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响*[J]. 地球科学进展, 2014, 29(7): 828-834.
[9] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[10] 魏柱灯, 方修琦, 苏筠, 萧凌波. 过去2 000年气候变化对中国经济与社会发展影响研究综述[J]. 地球科学进展, 2014, 29(3): 336-343.
[11] 潘竟虎, 刘伟圣. 基于腹地划分的中国城市群空间影响范围识别[J]. 地球科学进展, 2014, 29(3): 352-360.
[12] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[13] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[14] 葛全胜, 方修琦, 郑景云. 中国历史时期气候变化影响及其应对的启示*[J]. 地球科学进展, 2014, 29(1): 23-29.
[15] 包汉勇,郭战峰,张罗磊,黄亚平. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.