地球科学进展 ›› 2004, Vol. 19 ›› Issue (2): 224 -229. doi: 10.11867/j.issn.1001-8166.2004.02.0224

综述与评述 上一篇    下一篇

微量元素在幔源矿物与热液之间分配系数的研究进展
陈晋阳 1;郑海飞 2;曾贻善 2   
  1. 中国地质大学,湖北 武汉 430074;河南省地质测绘院,河南 郑州 450052
  • 收稿日期:2002-11-05 修回日期:2003-07-16 出版日期:2004-12-20
  • 通讯作者: 陈晋阳(1972-), 男, 湖北新洲人, 博士后,主要从事地球深部物质的实验研究. E-mail:E-mail:chenjy@gig.ac.cn
  • 基金资助:

    国家自然科学基金项目“地球内部几个重要界面物质的高温高压物性研究”(编号:10299040)资助.

PROGRESS OF TRACE ELEMENTS’ PARTITIONING COEFFICIENT BETWEEN MANTLE MINERALS AND AQUEOUS FLUIDS

CHEN Jinyang 1, ZHENG Haifei 2, ZENG Yishan 2   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2.Department of Geology, Peking University, Beijing 100871, China
  • Received:2002-11-05 Revised:2003-07-16 Online:2004-12-20 Published:2004-04-01

微量元素在幔源矿物与热液之间分配系数的差异是造成地幔不均一的一个重要因素,对于认识地球演化、元素的分异和板块构造具有重要的意义。热液的组成、矿物的结构、温度、压力以及氧逸度都与分配系数密切相关。不同微量元素在相同矿物或热液中的分配系数存在差别,而相同的元素在不同矿物中的分配系数也可能出现很大的变化,这是研究微量元素分异和不同地幔端员形成的理论基础。在较低的温度和压力下,热液的组成对分配系数的影响很大,随着温度和压力的升高,热液组成的影响逐渐减弱,而矿物的组成与结构的影响逐渐增大。由于分配系数影响因素的复杂性,因此在考虑地球深部微量元素的迁移和分异时需慎重对待。

Partitioning coefficient of trace elements between mantle minerals and aqueous fluids is important to understand the evolution and tectonics of the Earth. The diversity of the compositions of mantle results from the difference of partitioning coefficients of elements. The composition of aqueous fluids, crystal structure and component of minerals, temperature, pressure, and oxygen fugacity all have effects on partitioning coefficients. Partitioning coefficients of different trace elements in a same mineral or aqueous fluid might have great difference, and which for a same element might vary with different minerals, which cause the differentiation of trace elements in the mantle and result in all kinds of geochemical characteristics mantle. The composition of aqueous fluids has great effect on partitioning coefficient at low temperatures, with increasing temperature, its effect becomes little, whereas the effect of crystal structure and component of minerals becomes important. It should be careful to research the transport and diversity of materials of mantle related with partitioning coefficient owing to these complicated factors.

中图分类号: 

[1] Ahrens T J. Water storage in mantle[J]. Nature, 1989, 342: 122-123.
[2] Bell D R, Rossman G R. Water in Earth's mantle: The role of nominally anhydrous minerals[J]. Science, 1992, 255: 1 391-1 397.
[3] Thompson A B. Water in the Earth's upper mantle[J]. Nature, 1992, 358: 295-302.
[4] Pawley A R, Holloway J R. Water sources for subduction zone volcanism: New experimental constraints[J]. Science, 1993, 260: 664-667.
[5] Han Qingjun(韩庆军), Shao Ji'an(邵济安). Progress of study on water in the Earth's mantle[J]. Geological Science and Technology Information(地质科技情报), 1999, 18(4): 33-36(in Chinese)
[6] Xia Qunke(夏群科), Chen Daogong(陈道公), Zhi Xiachen(支霞臣). Research progress in structural water in nominally anhydrous mantle minerals[J]. Advance in Earth Sciences(地球科学进展), 1999, 14(5): 452-457(in Chinese)
[7] Pasteris J D, Wanamaker B J. Laser Raman microprobe analysis of experimentally reequilibrated fluid inclusions in olive: Some implication for mantle fluids[J]. American Mineral, 1988, 73: 1 074-1 088.
[8] Liu Congqiang(刘丛强), Huang Zhilong(黄智龙), Li Heping(李和平), et al. The geofluid in the mantle and its role in ore-forming processes[J]. Earth Science Frontiers(地学前缘), 2001, 8: 231-243(in Chinese).
[9] Francois G. Geochemistry: Earth's innermost secrets[J]. Nature, 1994, 369: 360-361.
[10] Hofmann C, Courtillot V, Feraud G. Timing of the Ethiopian flood basalt event and implications for plume birth and global change[J]. Nature, 1997, 398: 838-841.
[11] Brunsmann A, Franz G, Erzinger J. Mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu[J]. Geochimica et Cosmochimica Acta, 2001, 65: 559-570.
[12] Tackley P J. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory[J]. Science, 2000, 288: 2 002-2 007.
[13] McCulloch M T, Gamble J A. Geochemical and geodynamical comstraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102: 358-374.
[14] Peacock S M. Fluid processess in subduction zone[J]. Science, 1990, 352: 564-565.
[15] Turner S, Hawkesworth C. Constrains on flux rates and mantle dynamics beneath island arcs from TongaKermadec lava geochemistry[J]. Nature, 1997, 389: 568-573.
[16] Hart S R. A largescale isotope anomaly in the southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757.
[17] Shimizu N. Rare earth elements in garnets and clinopyroxenes from garnet Iherzolite nodules in Kimberltes[J]. Earth and Planetary Science Letters, 1975, 25: 26-32.
[18] Shimizu N, Richardson S H. Trace element abundance patterns of garnet inclusions in peridotitesuite diamons[J].Geochimica et Cosmochimica Acta, 1987, 51: 755-758.
[19] Stachel T, Harris J W. Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana[J]. Contribution to Mineralogy and Petrology, 1997, 129: 143-154.
[20] Maury R C, Defant M J, Joron J Z. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths[J]. Nature, 1992, 360: 661-663.
[21] Chen Jinyang(陈晋阳), Zheng Haifei(郑海飞), Zeng Yishan(曾贻善). Recent progress in supercritical water theoretical research[J]. Progress in Chemistry(化学进展), 2002, 14: 409-414(in Chinese)
[22] Zhang Mingjie(张铭杰), Wang Xianbin(王先彬), Li Liwu(李立武). Composition of mantle fluid[J]. Earth Science Frontiers(地学前缘), 2000, 7: 401-412(in Chinese)
[23] Navon O, Hutcheon I D, Rossman G R. Mantle-derived fluids in diamond microinclusions[J]. Nature, 1988, 335: 784-789.
[24] Roaenbaum J M, Zindler A, Rubenstone J L. Mantle fluids: Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3 229-3 252.
[25] Wood B J, Bryndzia L T, Johnson K E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation[J]. Science, 1990, 248: 337-345.
[26] Zhang Mingjie(张铭杰), Wang Xianbin(王先彬), Liu Gang(刘刚), et al. The composition of the fluids in alkali basalts and mantlederived xenoliths in eastern China[J]. Acta Geologica Sinica(地质学报), 1999, 73: 162-166(in Chinese)
[27] Xie Hongsen(谢鸿森). Introduction of Materials Science of the Earth's Interior[M].Beijing: Science Press, 1997. 117-121(in Chinese)
[28] Ayers J C, Eggler D H. Partitioning of elements between silicate melt and HO-NaCl fluids at 1.5 and 2.0GPa pressure: Implications for mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 1995, 59: 4 237-4 246.
[29] Keppler H. Constrains from partitioning experiments on the composition of subduction zone fluids[J]. Nature, 1996, 380: 237-240.
[30] Johannesson K H, Lyons W B, Yelken M A, et al. Geochemistry of rareearth elements in hypersaline and dilute acid natural waters: Complexation behavior and middle rareearth element enrichment[J]. Chemical Geology, 1996, 133: 125-144.
[31] Brenan J M, Shaw H F, Ryerson F J, et al. Mineralaqueous fluid partitioning of trace elements at 900 ℃ and 2.0 GPa: Constrains on the trace element chemistry of mantle and deep crustal fluids[J]. Geochimica et Cosmochimica Acta, 1995, 59: 3 331-3 350.
[32] Stalder R, Folly S F, Brey G P, [WT6BX]et al[WT6BZ]. Mineral-aqueous fluid partitioning of trace elements at 900~1 200℃ and 3.0~5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism[J]. Geochimica et Cosmochim Actaica, 1998, 62: 1 781-1 801.
[33] Brenan J M, Shaw H F, Ryerson F J, et al. Rutilefluid partitioning of Nb, Ta, Zr, U, and Th: Implications for highfieldstrengh elements depletions in island arc basalts[J]. Earth and Planetary Science Letters, 1994, 128: 327-339.
[34] Boettcher A L, O'Neil J R. Stable isotope chemical and petrographic studies of high pressure amphiboles and micas: Evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites[J]. American Journal of Science, 1980, 280A: 594-621.
[35] Hunter R H, Mekenzine D. The equilibrium geometry of carbonate melts in rocks of mantle composition[J]. Earth and Planetory Science Letters, 1989, 92: 347-356.

[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[3] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[4] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[5] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[6] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[7] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[8] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[9] 方捷, 孙静雯, 徐宏庆, 叶锦华, 陈建平, 任梦依, 唐超. 北大西洋中脊海底多金属硫化物资源预测[J]. 地球科学进展, 2015, 30(1): 60-68.
[10] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[11] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[12] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[13] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[14] 焦 鑫,柳益群,周鼎武,汪双双,南 云,周宁超,杨焱钧. “白烟型”热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2): 221-232.
[15] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
阅读次数
全文


摘要