地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 829 -839. doi: 10.11867/j.issn.1001-8166.2016.08.0829.

研究论文 上一篇    下一篇

水泥粉尘对工业区土壤磁学性质影响及其环境意义
李勇 1, 赵应权 2, 姚洁 1   
  1. 1.安徽科技学院电气与电子工程学院,安徽 凤阳 233100;
    2.成都理工大学沉积学院,四川 成都 610059
  • 收稿日期:2016-02-18 修回日期:2016-06-03 出版日期:2016-08-20

Magnetic Influences of Cement Dust on Soil in Industrial Area and Its Environmental Implications

Li Yong 1, Zhao Yingquan 2, Yao Jie 1   

  1. 1.College of Electrical and Electronic Engineering, University of Science and Technology of Anhui, Fengyang 233100, China;
    2.College of Sedimentary, Chengdu University of Technology, Chengdu 610059, China
  • Received:2016-02-18 Revised:2016-06-03 Online:2016-08-20 Published:2016-08-20
  • About author:Li Yong(1975-), male, Qidong County, Hu’nan Province, Associate professor. Research areas include environmental magnetism and magnetism.E-mail:liyong197510@163.com
为监测水泥粉尘对工业区土壤的影响,在水泥工业区内采集了水泥粉尘、降尘、水泥、粉煤灰、厂内绿地表土及厂周围旱地表土等样品,采用环境磁学方法进行磁学参数测量与矿物成分分析。结果显示所有样品中主要磁性矿物都是磁铁矿,水泥粉尘、水泥厂降尘、水泥、粉煤灰等样品中磁性矿物粒径较粗,主要是准单畴和多畴。被水泥粉尘和降尘污染的厂内绿地表土和厂周围旱地表土的磁学性质发生了明显改变,磁性矿物含量升高,磁性矿物粒径变粗。X射线衍射结果显示,被污染后的厂内绿地表土和厂周围旱地表土中主要矿物成分与水泥粉尘相同,都是石英和方解石。研究发现,土壤的磁学参数( χfd, χARM, χARM/SIRM)值能反映土壤被污染的程度,其值越低,表示土壤被污染越严重。因此,利用水泥工业区旱地表土磁学参数组合特征,可以监测水泥工业区土壤环境变化。
To monitor environmental implications of cement dust on soil in industrial area, magnetic parameters and mineral compositions were measured by the samples of the cement dust, cement factory dustfall, cement, coal ash, topsoil of green space in the factory and topsoil outside the factory. Results showed that the major magnetic minerals in the samples were magnetite, the magnetic mineral particle size of cement dust, dustfall, cement and coal ash was coarse Multi-Domian (MD) and Pseudo-Single-Domain (PSD). As topsoil of green space in the factory and topsoil outside the factory were polluted by cement dust, their magnetic properties had been obviously changed; the concentration of magnetic minerals elevated and particle size became coarser. The magnetic parameters ( χfd, χARM, χARM/SIRM) value can reflect the pollution level of the soil, the lower its value was, the more serious soil was polluted. X-ray diffraction results showed that the mineral compositions of the topsoil of green space in the factory and topsoil outside the factory were quartz and calcite, which were the same as cement dust. Magnetic parameters combination characteristics of topsoil can monitor the soil environmental changes in cement industry area.

中图分类号: 

[1] Bluvshtein N, Mahrer Y, Sandler A, et al . Evaluating the impact of a limestone quarry on suspended and accumulated dust[J]. Atmospheric Environment , 2011,45(9): 1 732-1 739.
[2] Miriam J H, Thomas L. Haze, clouds and limited sky visibility: Polarotactic orientation of crickets under difficult stimulus conditions[J]. The Journal of Experimental Biology ,2007, 210(18): 3 266-3 276.
[3] Suwido H L, Hidenori T, Aswin D U, et al . Impacts of haze in 2002 on social activity and human health in Palangka Raya[J]. Tropics , 2007, 16(3): 275-282.
[4] Zeleke Z K, Moen B E, Bratveit M. Cement dust exposure and acute lung function: A cross shift study[J]. BMC Pulmonary Medicine ,2010, 10(1):19.
[5] Pope C A, Burnett R T, Thun M J, et al . Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. Journal of the American Medical Association ,2002,287(9):1 132-1 141.
[6] Urszula K, Che F I, Malcolm E S, et al . Composition and element solubility of magnetic and non-magnetic fly ash fractions[J]. Environmental Pollution ,2003,123(2):255-266.
[7] Peter C, Thompson R, Harrison A, et al . Low temperature magnetic characterization of fire ash residues[J]. Physics and Chemistry of the Earth ,2002, 27(25/31): 1 355-1 361.
[8] Maqiere T, Goluchowska B, Jablonska M.Technogenic magnetic particles in Alkaline dusts from power and cement plants[J]. Water , Air , & Soil Pollution , 2013, 224: 1 389,doi: 10.1007/S11270-012-1389-9.
[9] Zerrouqi Z, Sbaa M, Oujidi M, et al .Assessment of cement’s dust impact on the soil using principal component analysis and GIS[J]. International Journal of Environmental Science & Technology , 2008, 5(1): 125-134.
[10] Asubiojo O I, Aina P O, Oluwole A F, et al . Effects of cement production on the elemental composition of soils in the neighborhood of two cement factories[J]. Water , Air , & Soil Pollution , 1991, 57(1): 819-828.
[11] Jordanova N V, Jordanova D V, Veneva L, et al . Magnetic response of soils and vegetation to heavy metal pollution—A case study[J]. Environmental Science & Technology , 2003, 37(19):4 417-4 424.
[12] Desenfant F, Petrovsky E, Rocbette P, et al . Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: Case study from South France[J]. Water , Air , Soil Pollution ,2004, 152(1): 279-312.
[13] Wang B, Xia D S, Yu Y, et al . Magnetic records of heavy metal pollution in urban topsoil in Lanzhou, China[J]. Chinese Science Bulletin , 2013,58(3):384-395.
[14] Lecoanet H, Leveque F, Ambrosi J P, et al . Combination of magnetic parameters: An efficient way to discriminate soil-contamination sources (south France)[J]. Environmental Pollution , 2003, 122(2): 229-234.
[15] Li Y. Magnetic study of polluted soil profile at the cement industry area, Fengyang County, Anhui Province[J]. Chinese Journal of Soil Science ,2014, 45(5): 1 089-1 093.
[16] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen and Unwin, 1986.
[17] Banerjee S K, King J, Marvin J. A rapid method for magnetic granulometry with applications to environmental studies[J]. Geophysical Research Letters , 1981, 8: 333-336,doi: 10.1029/GL0081004p00333.
[18] Oldfield F. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments[J]. Journal of Geophysical Research : Solid Earth , 1994, 99(b5): 9 045-9 050.
[19] Dunlop D J, Ozdemir O. Rock Magnetism: Fundmentals and Frontiers[M]. Cambridge,U.K.: Cambridge University Press, 1997.
[20] Zhao X Y, Liu Q S. Effects of the particle size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles[J]. Science in China ( Series D ), 2010, 53: 1 071-1 078.
[21] Oches E A, Banerjee S K. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic[J]. Studia Geophysica et Geodaetica , 1996, 40(3): 287-300.
[22] Thompson R, Morton D J. Magnetic susceptibility and particle-size distribution in recent sediments of the Loch Lomond drainage basin[J]. Journal of Sedimentary Research , 1979, 49: 801-811.
[23] Dearing J A, Bird P M, Dann R J L, et al . Secondary ferrimagnetic minerals in Welsh soils: A comparison of mineral magnetic detection methods and implications for mineral formation[J]. Geophysical Journal International ,1997, 130(3): 727-736.
[24] Fine P, Singer M J, Verosub K L. Use of magnetic susceptibility measurements in assessing soil uniformity in chronosequence studies[J]. Geophysical Journal International , 1992, 56(4): 1 195-1 199.
[25] Stanislav V V, Christina G V, Ali I K, et al . Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey[J]. International Journal of Coal Geology , 2005,61:35-63,doi: 10.1016/j.coal.2004.06.004.
[26] Evans M E, Heller F. Environmental Magnetism[M]. London: Academic Press, 2003.
[27] Konieczyński J, Stec K. The occurrence of selected trace elements in grain fractions of dust emitted from power, coke and cement plants[J]. Archives of Environmental Protection ,2009, 35(4):3-21.
[28] Shan H D, Lu S G. Mineral magnetism of power-plant fly ash and its environmental implication[J]. Acta Mineralogica Sinica , 2005,25(2):141-146.
[29] Kapicka A, Jordanova N, Petrovsky E, et al . Effect of different soil conditions on magnetic parameters of power-plant fly ashes[J]. Journal of Applied Geophysics , 2001, 48(2): 93-102.
[30] Zheng Y, Zhang S H. Magnetic properties of street dust and topsoil in Beijing and its environmental implications[J]. Chinese Science Bulletin , 2008,53(3):408-417.
[31] Qiao, Q Q, Zhang C X, Huang B C, et al . Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: Magnetic monitoring of street dust in Beijing Olympic Park[J]. Geophysical Journal International ,2011, 187(3):1 222-1 236.
[32] Hanesch M, Rantitsch G, Hemetsberger S, et al . Lithological and pedological influences on the magnetic susceptibility of soil: Their consideration in manetic pollution mapping[J]. Science of the Total Environment ,2007, 382(2/3): 351-363.
[33] Hanesch M, Scholger R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles[J]. Geophysical Journal International , 2005, 161(1): 50-56.
[34] Yang T, Liu Q S, Li H X, et al . Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications[J]. Atmospheric Environment ,2010,44(9): 1 175-1 185.
[35] Kapicka A, Petrovsky E, Ustjakb S, et al . Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in the Czech Republic[J]. Journal of Geochemical Exploration ,1999, 66: 291-297.
[36] Shu J, Dearing J A, Morse A P, et al . Determining the source of atmospheric particles in Shanghai, China, from magnetic geochemical properties[J]. Atmospheric Environment , 2001, 35(15): 2 615-2 625.
[37] Durza O. Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant[J]. Physics and Chemistry of the Earth ( Part A : Solid Earth and Geodesy ),1999, 24(6): 541-543.
[38] Fine P, Singer M J, Verosub K L, et al . New evidence for the origin of ferrimagnetic minerals in Loess from China[J]. Soil Science Society of America Journal , 1993, 57(6):1 537-1 542.
[39] Oldfield F. Environmental magnetism—A personal perspective[J]. Quaternary Science Reviews , 1991,10(1): 73-83.
[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[6] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[7] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[8] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[11] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[12] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[13] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[14] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[15] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
阅读次数
全文


摘要