地球科学进展 ›› 2017, Vol. 32 ›› Issue (2): 209 -219. doi: 10.11867/j.issn.1001-8166.2017.02.0209

研究简报 上一篇    

黄土地基改性处理技术研究进展评述与展望
李娜 1, 孙军杰 1, 2, 王谦 1, 2, *, 钟秀梅 1, 2, 冯敏杰 3, 郭鹏 1   
  1. 1.中国地震局兰州地震研究所 黄土地震工程重点实验室, 甘肃 兰州 730000;
    2.甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000;
    3.平凉市地震局,甘肃 平凉 744000
  • 收稿日期:2016-10-12 修回日期:2017-01-08 出版日期:2017-02-20
  • 通讯作者: 王谦(1985-),男,甘肃临夏人,助理研究员,主要从事土动力学与地震工程研究.E-mail:wangq0930@126.com
  • 基金资助:

    中国地震局地震预测研究所基本科研业务费专项“黄土丘陵沟壑区平填场地动力响应特征研究”(编号:2013IESLZ05); 国家自然科学基金项目“复杂应力条件下饱和黄土的动力变形特性研究”(编号:51408567)资助

Progress Review and Perspective Problems on Loess Foundation Reinforcement by Means of Modification Treatment

Li Na 1, Sun Junjie 1, 2, Wang Qian 1, 2, *, Zhong Xiumei 1, 2, Feng Minjie 3, Guo Peng 1   

  1. 1.Key Laboratory of Loess Earthquake Engineering, Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China;
    2.Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000,China;
    3.Pingliang Earthquake Administration, Pingliang Gansu 744000,China
  • Received:2016-10-12 Revised:2017-01-08 Online:2017-02-20 Published:2017-02-20
  • Contact: Wang Qian (1985-), male, Linxia City,Gansu Province, Assistant professor. Research areas include soil dynamics and earthquake engineering research.E-mail:wangq0930@126.com
  • About author:First author:Li Na(1992-),female,Minqin County, Gansu Province,Master student. Research areas include geotechnical earthquake engineering.E-mail:931464685@qq.com
  • Supported by:

    Project supported by the Basic Research Fund of Earthquake Prediction Institute, China Earthquake Administration “Study on dynamic response characteristics of excavation-filling site in loess hilly-gully area”(No.2013IESLZ05); The National Natural Science Foundation of China “The complex stress on the deformation characteristics of saturated loess under dynamic force”(No.51408567)

基于黄土地基改性的物化机制,分析了黄土地基改性处理方法与技术的研究进展及工程应用情况,评述了改性黄土动静力学性能研究的主要切入点及不同改性处理方法的优缺点,总结了未来黄土地基改性处理技术的研究方向。结果表明:黄土地基的物理、化学改性具有不同的内在机制;现阶段黄土地基改性处理研究更多关注了静载作用下地基的强度与稳定性,对动力特性、环境因素等的影响考虑不足,研究结果偏向性强、不够系统,定量化和标准化也显薄弱。新型环保改性材料研发及改性土强度、改性黄土的动力特性及稳定性、环境因素对改性地基的定量影响、黄土地基改性处理施工工艺的优化配置和施工过程的精细化控制等是未来需要关注的研究方向。

Based on the loess foundation modification mechanism, the methods and progress of loess foundation modification treatment application research in engineering were analyzed. The main points of the research on static and dynamic mechanical properties of modified loess were discussed. Meanwhile, the advantages and disadvantages of different modification methods were compared. Finally, the research direction of loess foundation modification in future was pointed out. The results show that there are different mechanisms between physical and chemical modifications in loess foundation. At present, researches on loess modification pay more attention to the strength and stability of the foundation under static load, which is lacking in the consideration of dynamic behaviors of loess foundation and environment factors. Research results are greatly biased, and the systematic, quantitative properties as well as standardization are weak. There is no doubt that some research directions should be concerned in future such as the research of new environmentally friendly materials and modified loess soil strength, stability of modified loess and dynamic behaviors, quantitative effect of environmental factors on the modified foundation, optimization of construction technology and fine control of construction process in the process of loess foundation modification.

中图分类号: 

[1] Wang Lanmin, Shi Yucheng, Liu Xu, et al. Loess Dynamics[M]. Beijing: Seismological Press,2003:1-2,85-143.
[王兰民, 石玉成, 刘旭,等. 黄土动力学[M].北京:地震出版社,2003:1-2,85-143.]
[2] Wang Hongxiao. Stability Analysis of Loess Slope Solidified by New Soil Stabilizer[D]. Taiyuan:Taiyuan University of Technology, 2015.
[王红肖. 新型固化剂改良黄土边坡稳定性分析[D].太原:太原理工大学,2015.]
[3] Peng Jianbing, Lin Hongzhou, Wang Qiyao,et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014,22(4):684-691.
[彭建兵,林鸿州,王启耀,等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报,2014,22(4):684-691.]
[4] Zhang Zhiyu, Fan Ting, Wang Xile. Pore structure parameters influence on various types of seismic wave propagation[J].Advances in Earth Science,2015,30(12):1 306-1 317.
[张志禹,樊婷,王喜乐. 孔隙结构参数对地震各类波传播的影响研究[J]. 地球科学进展,2015,30(12):1 306-1 317.]
[5] White J E. Underground Sound: Application of Seismic Waves[M]. Amsterdam:Elsevier,1983.
[6] White J E. Biot-Gardner theory of extensional waves in porousrods[J]. Geophysics,1986,51(3):742-745.
[7] Lei Xiangyi. Pore types of Chinese loess and its collapsibility[J]. Science in China (Series B), 1987, 17(12):1 309-1 316. [雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学:B辑, 1987, 17(12): 1 309-1 316.]
[8] Wang Lanmin, Yuan Zhongxia, Wang Jun,et al. Laboratory study of effect of dry density on seismic settlement of compacted loess[J]. Earthquake Engineering and Engineering Vibratiom,2000,20(1):75-80.
[王兰民,袁中夏,王峻,等. 干密度对击实黄土震陷性影响的试验研究[J]. 地震工程与工程振动,2000,20(1):75-80.]
[9] He Kaiming. Studies on the Anti-liquefaction Behavior of the Loess Ground Improved by Several Method[D]. Zhejiang: Zhejiang University, 2001.
[何开明. 经若干方法处理黄土地基抗液化性状的研究[D].浙江:浙江大学,2001.]
[10] Wang Qian, Wang Lanmin, Wang Jun, et al. Indices of Anti-liquefaction treatment of saturated compacted loess foundation based on theory of density control[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (Suppl.2): 844-847.
[王谦, 王兰民, 王峻,等. 基于密度控制理论的饱和黄土地基抗液化处理指标研究[J]. 岩土工程学报, 2013, 35(增刊2):844-847.]
[11] Zhang Huyuan, Zhao Tianyu, Wu Junrong,et al. Laboratory measurement and prediction to the permeability of bentonite-modified loess as a landfill liner[J]. Rock and Soil Mechanics,2011,32(7):1 963-1 969,1 974.
[张虎元,赵天宇,吴军荣,等.膨润土改性黄土衬里防渗性能室内测试与预测[J]. 岩土力学, 2011,32(7): 1 963-1 969,1 974.]
[12] Yuan Zhongxia. Characteristics and mechanismof dynamic residual deformation of Loess[J]. Recent Developments in World Seismology,2011,(2):35-36.
[袁中夏. 黄土动残余变形的特性与机理研究[J]. 国际地震动态,2011,(2):35-36.]
[13] Li Lan,Wang Lanmin,Shi Yucheng. Effect of clay on liquefaction of loess in Gansu[J]. World Earthquake Engineering,2007,23(4):102-106. [李兰,王兰民,石玉成.黏粒含量对甘肃黄土抗液化性能的影响[J].世界地震工程,2007,23(4):102-106.]
[14] Li Qi, He Zhaoyi, Leng Yanling. Testing study of indoor compaction test for consolid solidified-soil[J].Western China Communications Science & Technology,2008,(6):36-38.
[李琦,何兆益,冷艳玲.抗疏力固化土的室内击实试验研究[J]. 西部交通科技,2008,(6):36-38.]
[15] Zhang Huyuan, Lin Chengbin, Sheng Yumeng. Experimental study of engineering properties of loess reinforced by consolid system[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):3 574-3 580.
[张虎元,林澄斌,生雨萌.抗疏力固化剂改性黄土工程性质试验研究[J]. 岩石力学与工程学报,2015,34(1):3 574-3 580.]
[16] Wu Zhumin. Research on Loess Reinforced by Modification Sodium Silicate[D]. Lanzhou: Lanzhou University, 2013.
[吴朱敏.改性水玻璃固化黄土研究[D].兰州大学,2013.]
[17] Kang Yong. Analysis of the solidification mechanism and water resistance improvement accesses of water-glass[J]. Foshan Ceramics, 2011,(5):44-47,17.
[康永. 水玻璃的固化机理及其耐水性的提高途径[J]. 佛山陶瓷,2011,(5):44-47,17.]
[18] Lü Qingfeng, Wu Zhumin, Wang Shengxin. Mechanism of loess solidified with compound modification sodium silicate[J]. Journal of Engineering Geology, 2013,(2):324-329.
[吕擎峰,吴朱敏,王生新.复合改性水玻璃固化黄土机理研究[J]. 工程地质学报,2013,(2):324-329.]
[19] Wang Jun, Zhang Xuhong. Effect analysis of collapsibility loess foundation treament with dynamic compaction[J]. Electric Power Survy & Design,2004,(3):18-21.
[王军,张旭红.强夯法处理湿陷性黄土地基的效果分析[J]. 电力勘测设计,2004,(3):18-21.]
[20] He Weimin, Fan Jian. Evaluation of collapsible loess subgrade treated by dynamic coppaction[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Suppl.2):4 095-4 101.
[贺为民,范建.强夯法处理湿陷性黄土地基评价[J]. 岩石力学与工程学报,2007,26(增刊2):4 095-4 101.]
[21] Mi Haizhen, Yang Peng. A field experimental study of compaction piles in collapsible loess foundation[J]. Rock and Soil Mechanics,2012,33(7):1 951-1 956,1 964.
[米海珍,杨鹏.挤密桩处理湿陷性黄土地基的现场试验研究[J]. 岩土力学,2012,33(7):1 951-1 956,1 964.]
[22] Liu Zhiwei, Shen Rutao. Field tests on pre-bored compaction lime-soil pile( down-hole dynamic compaction method) to improve serious collapsible loess[J]. Rock and Soil Mechanics,2009,30(Suppl.2):339-343.
[刘志伟,申汝涛.钻孔挤密桩处理强湿陷性黄土地基试验研究[J]. 岩土力学,2009,30(增刊2):339-343.]
[23] Wang Junhai, Liu Yaming. Dynamic strength properties of compacted loess based on dynamic triaxial test[J].China Earthquake Engineering Journal,2016, 38(3):439-444.
[王军海,刘亚明.基于动三轴试验的压实黄土动强度特性研究[J]. 地震工程学报, 2016, 38(3):439-444.]
[24] Li Jianping. Bentonite processing property and application[J].Contributions to Geology and Mineral Resources Research,1998,13(1):67-73.
[李建平.膨润土的工艺特性及其应用[J]. 地质找矿论丛,1998,13(1):67-73.]
[25] Smith J A, Jaffe P R. Benezene tranaport through landfill liners containing organophilic bentonite[J]. Journal of Environmental Engineering,1994,120(6):1 559-1 577.
[26] Zhao Tianyu, Zhang Huyuan, Yan Gengsheng, et al. The influence of permeation conditions on the permeability coefficient of bentonite modifed loess[J]. Hydrogeology & Engineering Geology, 2010,37(5):108-112,117.
[赵天宇,张虎元,严耿升,等.渗透条件对膨润土改性黄土渗透系数的影响[J]. 水文地质工程地质,2010,37(5):108-112,117.]
[27] Yang Bo, Zhang Huyuan, Zhao Tianyu, et al. The dependence of modified loess permeability and pore structure[J]. Hydrogeology & Engineering Geology,2011,(6):96-101.
[杨博,张虎元,赵天宇,等.改性黄土渗透性与孔隙结构的依存关系[J]. 水文地质工程地质,2011,(6):96-101.]
[28] Yan Gengsheng, Zhang Huyuan, Zhao Tianyu. Study of change of modified loess of internal friction angle[J]. Coal-Ash,2009,(4):14-17.
[严耿升,张虎元,赵天宇.改性黄土内摩擦角变化研究[J]. 粉煤灰,2009,(4):14-17.]
[29] Liu Wanfeng, Yang Yongdong, Zhang Binwei. Study on construction properties of consolid solidified soil and its application on road pavement base in collapsible loess region[J]. China Building Materials Science & Technology,2014,(6):61-62,66.
[刘万锋,杨永东,张斌伟.抗疏力固化土工程特性及其在黄土路基稳定层中的应用[J]. 中国建材科技,2014,(6):61-62,66.]
[30] Zhang Huyuan, Peng Yu, Wang Xuewen, et al. Water entrance-and-release ability of loess soil modified by consolid system[J].Rock and Mechanics,2016,35(Suppl.1):19-26.
[张虎元,彭宇,王学文,等.抗疏力固化剂改性黄土进失水能力研究[J]. 岩土力学,2016,35(增刊1):19-26.]
[31] Eren S, Filiz M. Comparing the conventional soil stabilization methods to the consolid system used as alternative admixture matter in isoarta daridere material[J]. Construction and Building Materials,2009,23(7):2 473-2 680.
[32] Seco A, Ramirez F, Miqueleiz L,et al. The use of non-conventional additives in marls stabilization[J]. Applied Clay Science,2011, 51(4):419-423.
[33] Yang Youhai,Xu Shi, Liu Xingping, et al. Experimental Study on Strength Characteristics of Reformative Loess with Cement[C]. Chinese Society for Rock Mechanics & Engineering,2006:6.
[杨有海,徐实,刘兴平,等.水泥改良黄土的强度特性试验研究[C]. 中国岩石力学与工程学会,2006:6.]
[34] Geng Xuan, Yang Youhai, Xu Shi, et al. A study of the intersity properties of cement remolded loess and its influencing factors[J].Journal of Nanjing Institute of Technology (Natural Science Edition),2006,4(1):14-18.
[耿煊,杨有海,徐实,等.水泥改性黄土的强度特性及其影响因素的研究[J]. 南京工程学院学报:自然科学版,2006,4(1):14-18.]
[35] Wang Jiading, Peng Shujun, Ma Yan, et al.Dynamic tests on the cement-improved loess under the vibratory load[J]. China Earthquake Engineering Journal,2013,35(1):35-41.
[王家鼎,彭淑君,马闫,等.高速列车振动荷载下水泥改良黄土动力学试验[J]. 地震工程学报,2013,35(1):35-41.]
[36] Wang Qian, Liu Hongmei, Ma Haiping, et al. Liquefaction behavior and mechanism of the cement-stabilized loess[J]. Chinese Journal of Geotechnical Engineering,2016,38(11):2 128-2 134.
[王谦,刘红玫,马海萍,等.水泥改性黄土的抗液化特性与机制[J]. 岩土工程学报,2016,38(11):2 128-2 134.]
[37] Yan Xude, Zhang Fanyu, Liang Shouyun, et al. Characteristics of special surface area and cation exchange capacity of lime-stabilized loess[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2014,53(5):149-154.
[严旭德,张帆宇,梁收运,等.石灰固化黄土的比表面积和离子交换能力研究[J]. 中山大学学报:自然科学版,2014,53(5):149-154.]
[38] Wang Suixin, Fei Yueying, Yang Youhai. Experimental study on the strength characteristics of lime modified loess of passenger dedicated line in west of Zhengzhou[J]. Subgrade Engineering, 2007,(4):76-77.
[王随新,费月英,杨有海.郑西客运专线石灰改性黄土强度特性试验研究[J]. 路基工程,2007,(4):76-77.]
[39] Wang Yan. Experimental Study the Curing Period Effects on the Limeto Improve the Engineering Properities of Loess[D]. Xi’an: Chang’an University,2012.
[王妍.养护龄期对石灰改善黄土工程特性影响的试验研究[D].西安:长安大学,2012.
[40] Gao Licheng. Experimental Research on Mechanical Properties of Loess Improved by Solidified Agents[D]. Taiyuan: Taiyuan University of Technology,2013.
[高立成.固化剂改良黄土力学特性试验研究[D].太原:太原理工大学,2013.]
[41] Wang Yinmei, Gao Licheng. Experimental research on chemical improvement of loess[J]. Journal of Engineering Geology,2012,20(6): 1 071-1 077.
[王银梅,高立成.黄土化学改良试验研究[J]. 工程地质学报,2012,20(6):1 071-1 077.]
[42] Nicholson P G, Kashyap V. Fly Ash Stabilization of Tropical Hawaiian Soils[C]. Washington DC:Geotechnical Special Publication,1993,36:15-29.
[43] Glen Ferguson. Use of Self-cementing Fly Ash as a Soil Stabilization Agent[R]. New York: American Society of Civil Engineers,1993.
[44] Zhao Shaoqiang, Bie Dahua, Deng Jianchen. A study on flyash improved loess filling material[J]. Railway Construction Technology, 2006, (3):47-50.
[赵少强,别大华,邓剑辰.粉煤灰改良黄土填料的试验研究[J]. 铁道建筑技术,2006,(3):47-50.]
[45] Jia Cunxing. Experimental study on the improvement of highway subgrade filling with fly ash[J]. East China Highway, 2009,(1):42-44.
[贾存兴. 粉煤灰改良高速公路路基填料的试验研究[J]. 华东公路,2009,(1):42-44.]
[46] Gao Zhenlin,Liu Jiaxue, Wei Hanbo,et al. Experimental study of effect of fly ash on engineering characteristics of waterish loess[J]. Journal of North China University of Technology,2007,19(1):91-94.
[高振林,刘嘉学,韦寒波,等. 粉煤灰影响湿陷性黄土工程性质试验[J]. 北方工业大学学报,2007,19(1):91-94.]
[47] Wang Jun, Wang Qian, Wang Ping,et al. Effect of adding amount of fly ash on dynamic constitutive relationship of modified loess[J]. Chinese Journal of Geotechnical Engineering, 2013,35(Suppl.1):156-160.
[王峻,王谦,王平,等.粉煤灰掺入量对改性黄土动本构关系的影响[J]. 岩土工程学报,2013,35(增刊1):156-160.]
[48] Wang Jun, Wang Qian, Zhong Xiumei, et al. Experimental study of loess seismic subsidence under the coupling effect fly ash and dynamic[J]. Loading Hydrogelogy & Engineering Geology, 2014, 41(6): 70-75.
[王峻,王谦,钟秀梅,等.粉煤灰与动载耦合作用下黄土震陷试验研究[J]. 水文地质工程地质,2014,41(6): 70-75.]
[49] Yue Hai. Application of modified water glass in formation strengthening[J]. Zhonghua Construction, 2011,(4):116-117.
[岳海. 改性水玻璃在地层加固中的应用[J]. 中华建设,2011,(4):116-117.]
[50] Lü Qingfeng, Wu Zhumin, Wang Shengxin, et al. Mechanism of temperature-modification silicification grouted loess[J]. Rock and Soil Mechanics, 2013,34(5):1 293-1 298.
[吕擎峰,吴朱敏,王生新,等.温度改性水玻璃固化黄土机制研究[J]. 岩土力学,2013,34(5):1 293-1 298.]
[51] Romero E, Simms P H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J].Geotechnical and Geological Engineering,2008,26(6):705-727.
[52] Lü Qingfeng, Liu Pengfei, Shen Bei, et al. Laboratory study on peculiarity of loess solidified with temperature-modified sodium silicate under freeze-thaw cycles[J]. Journal of Engineering Geology, 2015,23(1):59-64.
[吕擎峰,刘鹏飞,申贝,等.温度改性水玻璃固化黄土冻融特性试验研究[J]. 工程地质学报,2015,23(1):59-64.]
[53] Lü Qingfeng, Liu Pengfei, Wu Zhumin, et al. Study on the peculiarity of loess solidified by modified sodium silicate under freeze-thaw cycles[J]. Science Technology and Engineering, 2014, 31(14):95-99.
[吕擎峰,刘鹏飞,吴朱敏,等.复合改性水玻璃固化黄土冻融特性试验研究[J]. 科学技术与工程,2014,31(14):95-99.]
[54] He Kaiming, Zhou Jian, Wang Lanmin. Research on the anti-liquefaction behavior of loess subsoil improved by chemical grouting[J]. Journal of Seismological Research, 2003, 26(4):396-399.
[何开明, 周健, 王兰民. 化学灌浆黄土地基的抗液化性状研究[J]. 地震研究, 2003, 26(4):396-399.]
[55] Xu Shi, Yang Youhai, Geng Xuan,et al. Experimental study on strength property of lime improved loess[J]. Journal of Lanzhou Jiaotong University,2006,25(6):97-100.
[徐实,杨有海,耿煊,等.石灰改性黄土的强度特性试验研究[J]. 兰州交通大学学报,2006,25(6):97-100.]
[56] Yue Jianping, Yang Youhai. Experimental study on the strengthening behaviors of lime and flyash-lime[J]. Journal of Lanzhou Insitute of Technology,2013,20(5):41-45.
[岳建平,杨有海.石灰及其与粉煤灰混合改良黄土强度特性试验研究[J]. 兰州工业学院学报,2013,20(5):41-45.]
[57] Deng Jin, Wang Lanmin, Wu Zhijian,et al. Acid-modified method for loess aseismic subsidence and its microstructure analysis[J]. Rock and Soil Mechanics, 2012,33(12):3 624-3 631.
[邓津,王兰民,吴志坚,等.黄土抗震陷变形的酸改性方法及其微观结构分析[J]. 岩土力学,2012,33(12):3 624-3 631.]
[58] Xia Qiong, Yang Youhai, Geng Xuan. Experimental study on flyash-cement loess filling[J]. Journal of Lanzhou Jiaotong University,2008,27(3):40-43,47.
[夏琼,杨有海,耿煊.粉煤灰与石灰、水泥改良黄土填料的试验研究[J]. 兰州交通大学学报,2008,27(3):40-43,47.]
[59] Sun Junjie, Wang Lanmin, Qiu Rendong, et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics, 2012,29(5):53-60.
[孙军杰, 王兰民, 秋仁东, 等. 基于物理力学机制的黄土震陷数学估算模型[J]. 工程力学,2012, 29(5):53-60.]
[60] Li Qi, Song Ranran, Kuang Dongqin,et al. Status and advances of abandoned process of wells for CO2 geological storage[J]. Advances in Earth Science,2016,31(3):225-235.
[李琦,宋然然,匡冬琴,等. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展,2016,31(3):225-235.]
[61] Guo Xiaoyun,Wang Min,Yan Jiaqing,et al.Comparsion of effect of lime-soil compaction pile and dynamic consolidation method to improve collapsible loess ground[J]. Construction Technology, 2012, 41(19):68-71.
[郭小云,王敏,闫嘉庆,等.灰土挤密桩法和强夯法处理湿陷性黄土地基的效果对比[J]. 施工技术,2012,41(19):68-71.]
[62] Shaanxi Institute of Building Science Research and Design,et al. Collapsible Loess Area Building Code: GBJ25-90[S]. Beijing:China Architecture and Building Press, 2004.
[陕西省建筑科学研究设计院等.湿陷性黄土地区建筑规范:GBJ25-90[S].北京:中国建筑工业出版社, 2004.]
[63] Shanxi Investigation and Design Institute. The Local Standard of Engineering Construction in Shanxi-Site Investigation and Foundation Treatment of Collapsible Loess:DBJ04/T312-2015[S]. Beijing:China Building Materials Industry Press, 2015.
[山西省勘察设计研究院.山西省工程建设地方标准——湿陷性黄土场地勘察及地基处理技术规范:DBJ04/T312-2015[S].北京:中国建材工业出版社, 2015.]
[64] Shaanxi Provincial Department of Construction. Technical Specification for Ground Treatment by Compaction Pile Method, J10788-2006[S]. Xi’an:Xi’an Zhaoyang Packaging Printing Co., Ltd., 2006.
[陕西省建设厅.挤密桩法处理地基技术规程:J10788-2006[S]. 西安:西安昭阳包装印刷有限公司, 2006.]
[65] Shaanxi Provincial Department of Construction. Technical Specifications for Collapsible Loess Ground Treatment by Dynamic Compaction,DBJ61-9-2008[S]. Xi’an:Xi’an Jianke Printing Co., Ltd., 2008.
[陕西省建设厅.强夯法处理湿陷性黄土地基规程:DBJ61-9-2008[S]. 西安:西安建科印务有限责任公司,2008.]
[66] Beijing Jiaotong University. Technical Specification for Down-hole Dynamic Compaction:CECS 197-2006[S]. Beijing:China Planning Press, 2006.
[北京交通大学.孔内深层强夯法技术(DDC)规程:CECS 197-2006[S]. 北京:中国计划出版社,2006.]
[67] Gansu Construction Science and Technology Committee. Specification for Seismic Design of Buildings in Gansu:DB62/T25-3055-2011[S].Lanzhou: Gansu Building Standard Drawing Station, 2012.
[甘肃建设科技专家委员会.甘肃省地方标准—建筑抗震设计规范:DB62/T25-3055-2011[S]. 兰州:甘肃建筑标准图发行站, 2012.]
[68] Second Highway Survey and Design Institute. Specification for Design of Highway Subgrades:JTG D30-2015[S]. Beijing:The People’s Communications Press, 2004.
[中交第二公路勘察设计研究院.公路路基设计规范:JTG D30-2015[S]. 北京:人民交通出版社, 2004.]
[69] Ministry of Communications, Institute of Highway Science and Technology. Technical Specification for Construction of Highway Pavement Base: JTJ034-2000[S]. Beijing:China Communications Press, 2000.
[交通部公路科学研究所.公路路面基层施工技术规范:JTJ034-2000[S].北京:人民交通出版社, 2000.]
[70] Wang Yinmei. A new improved method of foundation treatment for collapsible loess[J]. The Chinese Journal of Geological Hazard and Control,2008,19(4):106-109,124.
[王银梅.湿陷性黄土地基处理新途径的探讨[J]. 中国地质灾害与防治学报,2008,19(4):106-109,124.]
[71] Nunes C A , Lima C F, Barbosa L C A, et al. Determination of eucalyptus Spp Lignin S/G ratio: A comparison between methods[J].Bioresource Technology,2010, 101(11):4 056-4 061.
[72] Woll J H, Surdahl R, Everett R, et al. Road Stabilizer Product Performance: Seedskadee National Wildlife Refuge[R]. Federal Highway Administration, Publication No. FHWA- CFL/TD-08-005,2008.
[73] Ceylan H, Gopalakrishnan K, Kim S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board,2010:130-137,doi:10.3141/2186-14.
[74] Indraratna B, Muttuvel T, Khabbaz H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal,2009, 46(1):57-68.
[75] Tingle J S, Santoni R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1 819:72-84,doi:10.3141/18196-10.
[76] Kim S, Gopalakrishnan K, Ceylan H. Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct[J]. Journal of Transportation Engineering, 2012, 138(11):1 283-1 290.

[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[8] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[9] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[10] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[11] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[12] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[13] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[14] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[15] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
阅读次数
全文


摘要