Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (7): 810-818    DOI: 10.11867/j.issn.1001-8166.2014.07.0810
研究论文     
崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例
张大林, 刘希林
中山大学地理科学与规划学院,广东 广州 510275
Analysis of the Grain Size Properties and Flow Body Classes of the Mud Sand Flow: An Example of Liantanggang Collapsing Hill and Gully in Wuhua County of Guangdong
Zhang Dalin, Liu Xilin
School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
 全文: PDF(9583 KB)   HTML
摘要:

崩岗泥砂流是降雨过程中在崩岗流域内形成的一种固液两相流,是崩岗侵蚀泥沙向外输移的主要方式,泥砂流流体类型的判别也是崩岗治理的依据之一。通过野外考察与现场采样,对崩岗泥砂流的粒度组成特性进行了分析。结果表明,泥砂流容重介于1.16~1.60 t/m3之间,含沙量为257.03~960.55 kg/m3,且均自沟道上部至下部逐渐降低。泥砂流浆体以粉砂和黏粒物质为主。随着容重的增加,粒度曲线由单峰型转变为与风化壳土体类似的双峰型,呈现无分选搬运的特点,且流体粒度逐渐粗化。泥砂流固体物质中值粒径与流体容重有较好的线性正相关关系。通过对泥砂流与泥石流和黄土丘陵沟壑区高含沙水流粒度特性的对比后发现,泥砂流属于高含沙水流向泥石流过渡的中间类型,但与泥石流具有更为密切的关系,可以认为泥砂流是广义泥石流的一个亚类,即崩岗型泥石流。

关键词: 崩岗侵蚀高含沙水流粒度组成泥石流泥砂流    
Abstract:

Mud sand flow is a kind of solid-liquid two-phase flow formed in collapsing hill and gully basin during rainfall. It is the main way to export erosion product. The discrimination of its fluid type is one of the collapsing hill and gully control theoretical basis. This paper analyzed the basic characteristics of mud sand flow like grain size and so on through fieldwork and sampling. The results show that the density of mud sand flow is between 1.16~1.60 t/m3 and the solids content is between 257.03~960.55 kg/m3, both of which decrease from the upper to the lower channel. The slurry of mud sand flow is composed mainly of silt and clay. As the density increases, the particle size distribution curve transforms from a single peak to the bimodal distribution similar to the weathering crust with no sorting, and the grain size of mud sand flow becomes coarser which shows a well positive linear correlation between the sediment median particle diameter and density of mud sand flow. The comparison during mud sand flow, hyperconcentrated flow and debris flow shows that collapsing hill and gully mud sand flow, which belongs to an intermediate class between hyperconcentrated flow and debris flow, has a closer link with debris flow. Therefore, mud sand flow can be considered as a sub-class of generalized debris flow that may be called as collapsing hill and gully type debris flow.

Key words: Collapsing hill and gully erosion    Grain size    Hyperconcentrated flow    Debris flow.    Mud sand flow
出版日期: 2014-07-10
:  P934  
基金资助:

国家自然科学基金项目“华南崩岗溯源侵蚀与泥石流启动和形成的试验研究”(编号:41071186)资助

通讯作者: 刘希林(1963-),男,湖南新邵人,教授,主要从事地貌灾害过程及评估和预测研究.     E-mail: liuxilin@mail.sysu.edu.cn
作者简介: 张大林(1987-),男,山东济南人,博士研究生,主要从事地质灾害评估和预测预报研究.E-mail:zdl87@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘希林
张大林

引用本文:

张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.

Zhang Dalin, Liu Xilin. Analysis of the Grain Size Properties and Flow Body Classes of the Mud Sand Flow: An Example of Liantanggang Collapsing Hill and Gully in Wuhua County of Guangdong. Advances in Earth Science, 2014, 29(7): 810-818.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.07.0810        http://www.adearth.ac.cn/CN/Y2014/V29/I7/810

[1] Physical Geography Editorial Committee of Chinese Academy of Science. China Physical Geography·Geomorphology[M]. Beijing: Science Press, 1980.[中国科学院《中国自然地理》编辑委员会. 中国自然地理·地貌[M]. 北京: 科学出版社, 1980.]
[2] Zheng. Introduction to Geomorphology[M]. Guangzhou: Guangdong Higher Education Press, 1999.[吴正. 地貌学导论[M]. 广州: 广东高等教育出版社, 1999.]
[3] Xilin, Lian Haiqing. Distribution choices of elevation and slope orientation of collapsing hills[J]. Bulletin of Soil and Water Conservation, 2011, 3(4): 32-36.[刘希林, 连海清. 崩岗侵蚀地貌分布的海拔高程与坡向选择性[J]. 水土保持通报, 2011, 3(4): 32-36.]
[4] Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of Earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[5] Shijun. The process and mechanism of red Earth slope disintegration erosion[J]. Bulletin of Soil and Water Conservation, 1994, 14(6): 31-39.[邱世钧. 红土坡地崩岗侵蚀过程与机理[J]. 水土保持通报, 1994, 14(6): 31-39.]
[6] Zhifeng, Li Dingqiang, Qiu Shijun. Systematic analysis of slope disintegration erosion landform in South China[J]. Bulletin of Soil and Water Conservation, 1999, 19(5): 24-26.[吴志峰, 李定强, 邱世钧. 华南水土流失区崩岗侵蚀地貌系统分析[J]. 水土保持通报, 1999, 19(5): 24-26.]
[7] Siping. A study on characteristics of rock-soil and countermeasures of the collapsed mound formation[J]. Journal of Soil Water Conservation, 1992, 1(3): 68-74.[李思平. 广东省崩岗侵蚀规律和防治的研究[J]. 自然灾害学报, 1992, 1(3): 68-74.]
[8] Chuanxiang, Wang Tao, Lu Xiaobing. Meso-mechanical simulation of slope disintegration erosion under rainfall[J]. Journal of Mountain Science, 2013, 31(6): 710-715.[熊传祥, 王涛, 鲁晓兵. 降雨作用下崩岗型成细观机理模拟[J]. 山地学报, 2013, 31(6): 710-715.]
[9] Dalin, Liu Xilin. Application of 3D laser scanning to monitoring the landform changes of collapsing hill and gully: A case study of Liantanggang collapsing hill and gully in the Wuhua County of Guangdong[J]. Tropical Geography, 2014, 34(2): 133-140.[张大林, 刘希林. 应用三维激光扫描监测崩岗侵蚀地貌变化——以广东五华县莲塘岗崩岗为例[J]. 热带地理, 2014, 34(2): 133-140.]
[10] Fangshi, Huang Yanhe, Lin Jinshi, et al. The dynamic characteristics of soil detachment of slumping deposit by surface runoff in Benggang[J]. Journal of Soil and Water Conservation, 2013, 27(1): 86-89.[蒋芳市, 黄炎和, 林金石, 等. 坡面水流分离崩岗崩积体土壤的动力学特征[J]. 水土保持学报, 2013, 27(1): 86-89.]
[11] Jiongxin. Hyperconcentrated flow in the Southern China granite region and the implications in geomorphology[J]. Journal of Sediment Research, 1992, (2): 12-19.[许炯心. 华南花岗岩地区的高含沙水流及其地貌学意义[J]. 泥沙研究, 1992, (2): 12-19.]
[12] Canshen. The study of the breach-down-hill of granite area and the water and sand loss forecast[J]. Supplement to the Journal of Sun Yat Sen University, 1993, (2): 12-19.[沈灿燊. 广东亚热带花岗岩崩岗和水沙流失预报模型[J]. 中山大学学报论丛, 1993, (2): 12-19.]
[13] Jinshi, Huang Yanhe, Zhang Xubin, et al. Apportioning typical collapsing hill’s erosion sediment sources of granite region in Southern China[J]. Journal of Soil and Water Conservation, 2012, 26(3): 53-57.[林金石, 黄炎和, 张旭斌, 等. 南方花岗岩区典型崩岗侵蚀产沙来源分析[J]. 水土保持学报, 2012, 26(3): 53-57.]
[14] Xilin, Zhang Dalin, Jia Yaoyao. Soil physical properties of collapsing hill and gully and their indications for soil erosion: An example of Liantanggang collapsing hill and gully in Wuhua County of Guangdong[J]. Advances in Earth Science, 2013, 28(7): 802-811.[刘希林, 张大林, 贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.]
[15] Xilin, Mo Duowen. Debris flow and its subject attribute[J]. Journal of Natural Disasters, 2001, 10(3): 1-6.[刘希林, 莫多闻. 论泥石流及其学科性质[J]. 自然灾害学报, 2001, 10(3): 1-6.]
[16] Chuan, Zhang Shucheng. Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows[J]. Advances in Earth Science,2008, 23(8): 787-793.[唐川, 章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793.]
[17] Lianfen, Peng Zuwu, Wang Shuonan, et al. Classification of “7.24” rainstorm debris flow based on start-up model in Luanchuan County of He’nan China[J]. Journal of Mountain Science, 2013, 31(3): 334-341.[邵莲芬, 彭祖武, 王硕楠, 等. 栾川7. 24 暴雨泥石流启动模式分类[J]. 山地学报, 2013, 31(3): 334-341.]
[18] Zhicheng, Li Zhuofen, Ma Ainai, et al. Debris Flow in China[M]. Beijing: Science Press, 2004.[康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004.]
[19] Xiangjun, Shu Anping. Movement Mechanism and Disaster Control for Debris Flow[M]. Beijing:Tsinghua University Press, 2004.[费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004.]
[20] Dalin, Liu Xilin. Evolution and phases division of collapsed gully erosion landform[J]. Journal of Subtropical Resources and Environment, 2011, 6(2): 23-28.[张大林, 刘希林. 崩岗侵蚀地貌的演变过程及阶段划分[J]. 亚热带资源与环境学报, 2011, 6(2): 23-28.]
[21] Anping, Fei Xiangjun. Carrying capacity of hyperconcentrated flow[J]. Science in China(Series G), 2008, 38(6): 653-667.[舒安平, 费祥俊. 高含沙水流挟沙能力[J]. 中国科学:G辑, 2008, 38(6): 653-667.]
[22] Ning, Wan Zhaohui. Sediment Movement Mechanics[M]. Beijing: Science Press, 1983.[钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983.]
[23] Dongtao, Cui Peng, Zhang Jinshan, et al. Formation causes and features of mudflows in the Loess Plateau, China[J].Arid Land Geography, 2005, 28(4): 435-440.[马东涛, 崔鹏, 张金山, 等. 黄土高原泥流灾害成因及特征[J]. 干旱区地理, 2005, 28(4): 435-440.]
[1] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[2] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[3] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[4] 刘希林,张大林,贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.
[5] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[6] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[7] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[8] 张康,王兆印,余国安,韩鲁杰. 城市泥石流沟的治理启示——以深沟为例[J]. 地球科学进展, 2011, 26(12): 1269-1275.
[9] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124.
[10] 唐川,章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793.
[11] 余斌. 粘性泥石流的平均运动速度研究[J]. 地球科学进展, 2008, 23(5): 524-532.
[12] 唐川. 城市泥石流灾害预警问题探讨[J]. 地球科学进展, 2008, 23(5): 546-552.
[13] 崔鹏; 唐邦兴. 泥石流学科的发展和对策[J]. 地球科学进展, 1993, 8(2): 14-18.