地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 347 -358. doi: 10.11867/j.issn.1001-8166.2012.03.0347

所属专题: IODP研究

IODP研究 上一篇    下一篇

高分辨率FMS成像测井资料在科学大洋钻探中的应用
钟广法,游倩   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2012-02-19 修回日期:2012-02-23 出版日期:2012-03-10
  • 通讯作者: 钟广法(1964-),男,湖南临澧人,博士,教授,主要从事地震、测井解释和沉积学研究. E-mail:gfz@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“南海北部陆坡区深水沉积牵引体的时空分布及形成机制”(编号:91028003)和“南海深海测井记录中的气候周期和事件”(编号:40476030);国家高技术研究发展计划重点项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Applications of High-Resolution Formation Microscanner Image Logs to Scientific Ocean Drilling

Zhong Guangfa, You Qian   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
  • Received:2012-02-19 Revised:2012-02-23 Online:2012-03-10 Published:2012-03-10

FMS地层微电阻率扫描成像测井技术诞生于1986年,1989年首次在大洋钻探中获得应用。它采用纽扣电极阵列沿井壁纵向扫描方式采集地层的电阻率信息,经过适当的数字和图像处理后转化为井壁地层的二维微电阻率图像。FMS资料具有分辨率高(理论分辨率为5 mm)、连续原位测量及定向性等特点,是科学大洋钻探中岩芯地质分析方法的重要补充,具有其他地球物理方法难以替代的作用。从岩芯归位和定向、岩性岩相识别及地层剖面重建、沉积构造和古流方向分析、地层旋回性与古气候周期分析、浊积层厚度统计分析、构造和应力场分析及洋壳研究等7个方面对FMS在科学大洋钻探中的应用现状进行综述,对目前FMS成像测井资料应用中存在的问题及发展方向进行分析,包括利用率不高、定量分析成果欠缺、研究深度和广度有待拓展等。

FMS formation micro-resistivity image logging, developed in 1986, was first used in scientific ocean drilling in 1989. It measures the electrical conductivity of borehole strata by using an array of pad-mounted button electrodes. The measured data are transformed into visual images reflecting variations of stratal details after a series of numerical and image processing steps. As high resolution (down to 5 mm), continuous and orientated in-situ measurements, FMS image logs provide an important supplement to core-based geological analysis in scientific ocean drilling, which is difficult to be replaced by other geophysical well loggings. The paper presents a review on the applications of FMS data to scientific ocean drilling, including core depth matching and core orientation, recognition of lithology and reconstruction of lithostratigraphic columns, sedimentary structures and paleo-current direction analysis, stratigraphic cyclicity and paleo-climate analysis, statistics of thickness distribution of turbidite beds, structural and stress analysis, as well as oceanic crust research. Some problems existing  in the analyses of the FMS data from ocean drilling are discussed, including low rate of utilization, insufficiency of quantitative analysis, and limited application scope and profundity.

中图分类号: 

[1]Ekstrom M P, Dahan C A, Chen M, et al. Formation imaging with microelectrical scanning arrays[C]27th Annual Logging Symposium Transactions. Society of Professional Well Log Analysts, 1986.
[2]Pezard P A, Lovell M, ODP Leg 126 Shipboard Scientific Party. Downhole images-electrical scanning reveals the nature of subsurface oceanic crust[J]. EOS,1990, 71: 710.
[3]Hiscott R N, Colella A, Pezard P, et al. Sedimentology of deep-water volcaniclastics, Oligocene Izu-Bonin forearc basin, based on formation microscanner images[C]∥Taylor B, Fujioka K, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 126. Texas: Texas A&M University, 1992: 75-96.
[4]Pezard P A, Lovell M A, Hiscott R N. Downhole electrical images in volcaniclastic sequences of the Izu-Bonin forearc basin, western Pacific[C]Taylor B, Fujioka K, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 126. Texas: Texas A&M University, 1992: 603-624.
[5]Harker S D, McGann G J, Bourke L T, et al. Methodology of Formation MicroScanner image interpretation in Claymore an Scapa fields (North Sea)[C]Hurst A, Lovell M A, Morton A C, eds. Geological Applications of Wireline Logs. London: The Geological Society of London Special Publication 48, 1990: 11-25.
[6]Molinie A J, Ogg J G. Formation Microscanner imagery of Lower Cretaceous and Jurassic sediments from the western Pacific (Site 801)[C]Larson R L, Lancelot Y,  eds. Proceedings of the Ocean Drilling Program, Scientific Results, 129. Texas: Texas A&M University, 1992: 671-691.
[7]Salimullah A R M, Stow D A V. Application of FMS images in poorly recovered coring intervals-examples from ODP Leg 129[C]Hurst A, Griffiths C M, Worthington P F,eds. Geological Applications of Wireline Logs II. London:The Geological Society of London Special Publication 65, 1992: 71-86.
[8]Pirmez C, Hiscott R N, Kronen J K Jr. Sandy turbidite successions at the base of channel-levee systems of the Amazon Fan revealed by FMS logs and cores: Unraveling the facies architecture of large submarine fans[C]Flood R D, Piper D J W, Klaus A, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 155. Texas: Texas A&M University, 1997: 7-34.
[9]Serra O. Formation MicroScanner Image Interpretation[M]. Houston: Schlumberger Educational Service, 1989: 1-117.
[10]Lovell M A, Harvey P K, Brewer T S, et al. Applications of FMS images in the Ocean Drilling Program-an overview[C]Cramp A, MacLeod A, Lee C J, et al. eds. Geological Exploration of Ocean Basins-Results from the Ocean Drilling Program.  London:The Geological Society of London Special Publication 131, 1998: 287-303.
[11]Pirmez C, Brewer T S. Borehole electrical images: Recent advances in ODP [J]. JOIDES Journal, 1998, 24 (1): 14-17.
[12]Prensky S E. Advances in borehole imaging technology and applications[C]Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London: The Geological Society of London Special Publication 159, 1999: 1-43.
[13]Major C O, Pirmez C, Goldberg D. High-resolution core-log integration techniques-examples from the Ocean Drilling Program[C]Harvey P K, Lovell M A, eds. Core-Log Integration. London:The Geological Society of London Special Publication 136,  1998: 285-295.
[14]Tartarotti P, Crispini L, Einaudi F, et al. Data report: reoriented structures in the East Pacific Rise basaltic crust from ODP Hole 1256D, Leg 206: Integration of core measurements and electrical-acoustic images[C]Teagle D A H, Wilson D S, Acton G D, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 206. Texas: Texas A&M University, 2006: 1-26.
[15]MacLeod C J, Parson L M, Sager W W. Identification of tectonic rotations in boreholes by the integration of core information with Formation MicroScanner and borehole televiewer images[C]Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II. London:The Geological Society of London Special Publication 65,  1992: 235-246.
[16]MacLeod C J, Parson L M, Sager W W. Reorientation of cores using the Formation Microscanner and borehole televiewer-application to structural and paleomagnetic studies with the Ocean Drilling Program[C]∥Hawkins J W, Parson L M, Allan J F, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 135. Texas: Texas A&M University, 1994: 301-311.
[17]Haggas S L, Brewer T S, Harvey P K, et al. Relocating and orientating cores by the integration of electrical and optical images: A case study from Ocean Drilling Program Hole 735B[J]. Journal of the Geological Society, London, 2001, 158: 615-623.
[18]DeMenocal P. Downhole logs as palaeoclimate tools: A case study from ODP Leg 128, Sea of Japan[J]. EOS, 1994, 75(44): 309.
[19]Hiscott R N, Colella A, Pezard P, et al. Basin plain turbidite succession of the Oligocene Izu-Bonin intraoceanic forearc basin [J]. Marine and Petroleum Geology, 1993, 10: 450-466.
[20]Pezard P A, Hiscott R N, Lovell M A, et al. Evolution of the lzu-Bonin intraoceanic forearc basin, western Pacific, from cores and FMS images[C]Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II: The Geological Society of London Special Publication 65, London, 1992: 43-69.
[21]Salimullah A R M, Stow D A V. Wireline log signatures of resedimented volcaniclastic facies, ODP Leg 129, west central Pacific[C]Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II: The Geological Society of London Special Publication 65, London, 1992: 87-97.
[22]Awadallah S A M, Hiscott R N, Bidgood M, et al. Turbidite facies and bedthickness characteristics inferred from microresistivity (FMS) images of lower to upper Pliocene rift-basin deposits, Woodlark Basin, offshore Papua New Guinea[C]Huchon P, Taylor B, Klaus A, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 180, 2001: 1-30.
[23]Cooper P, Arnaud H M, Flood P G. Formation Microscanner logging responses to lithology in guyot carbonate platforms and their implications-sites 865 and 866[C]Winterer E L, Sager W W, Firth J V, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 143. Texas: Texas A&M University, 1995: 329-372.
[24]Ogg J, Camoin G F, Jansa L. Takuyo-Daisan Guyot: Depositional history of the carbonate platform from downhole logs at Site 879 (Outer Rim)[C]Haggerty J A, Premoli Silva I, Rack F, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 144. Texas: Texas A&M University, 1995: 361-380.
[25]Ogg J, Camoin G F, Vanneau A A. Limalok Guyot: depositional history of the carbonate platform from downhole logs at site 871 (lagoon) [C] Haggerty J A, Premoli Silva I, Rack F, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 144. Texas: Texas A&M University, 1995: 233-253.
[26]Williams T, Pirmez C. FMS Images from carbonates of the Bahama Bank Slope, ODP Leg 166: Lithological identification and cyclo-stratigraphy[C]Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London:The Geological Society of London Special Publication 159,  1999: 227-238.
[27]Demant A, Cambray H, Vandamme D. Lithostratigraphy of the volcanic sequences at Hole 917A, Leg 152, SE Greenland Margin [J]. Journal of the Geological Society, London, 1995,152(6): 943-946.
[28]Bartetzko A, Paulick H, Iturrino G, et al. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: Evidence from geophysical downhole logging data (ODP Leg 193)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4 (10): doi:10.1029/2003GC000575.
[29]Salimullah A R M, Stow D A V. Ichnofacies recognition in turbidites/hemiturbidites using enhanced FMS images—Examples from ODP Leg 129 [J]. The Log Analyst,1995, 36(4): 38-49.
[30]Bernet K H, Eberli G P, Gilli A. Turbidite frequency and composition in the distal part of the Bahamas Transect[C]Swart P K, Eberli G P, Malone M J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 166. Texas: Texas A&M University, 2000: 45-60.
[31]DeMenocal P B, Bristow J F, Stein R. Paleoclimatic applications of downhole logs: Pliocene-Pleistocene results from Hole 798b, Sea of Japan[C]Pisciotto K A, Ingle J C Jr, von Breymann M T, et al. Proceedings of the Ocean Drilling Program, 127/128, Part 1. Texas: Texas A&M University, 1992: 393-407.
[32]Meredith J A, Tada R. Evidence for Late Miocene cyclicity and broad-scale uniformity of sedimentation in the Yamato Basin, Sea of Japan, from Formation Microscanner data[C]∥Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, Part 2. Texas: Texas A&M University, 1992: 1 037-1 046.
[33]Kroon D, Williams T, Pirmez C, et al. Coupled early Pliocene-middle Miocene bio-cyclostratigraphy of Site 1006 reveals orbitally induced cyclicity patterns of Great Bahama Bank carbonate production[C]Proceedings of the Ocean Drilling Program, Scientific Results, 166. Texas: Texas A&M University, 2000: 155-166.
[34]Williams T, Kroon D, Spezzaferri S. Middle and Upper Miocene cyclostratigraphy of downhole logs and short-to long-term astronomical cycles in carbonate production of the Great Bahama Bank[J].Marine Geology, 2002, 185: 75-93.
[35]Reunning L, Reijmer J J G, Betzler C. Sedimentation cycles and their diagenesis on the slope of a Miocene carbonate ramp (Bahamas, ODP Leg 166)[J]. Marine Geology, 2002, 185: 121-142.
[36]Puga-Bernabéu, Betzler C. Cyclicity in Pleistocene upper-slope cool-water carbonates: Unravelling sedimentary dynamics in deep-water sediments, Great Australian Bight, ODP Leg 182, Site 1131A [J]. Sedimentary Geology, 2008, 205: 40-52.
[37]Zoback M D, Moos D, Mastin L, et al. Well bore breakouts and in situ stress [J]. Journal of Geophysical Research,1985, 90: 5 523-5 530.
[38]Gough D I, Bell J S. Stress orientations from borehole wall fractures with examples from Colorado, East Texas, and northern Canada [J]. Canadian Journal of Earth Sciences, 1982, 19: 1 358-1 370.
[39]Plumb R A, Hickman S H. Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well [J]. Journal of Geophysical Research, 1985, 90: 5 513-5 521.
[40]Rummel F. Hydraulic fracturing stress measurements theory and practice[C]Bonn G ed. Spaungsmessungen und Bohrlochstabilitat, KTB-PL, NLFB, Hannover, KTB-Rep. 88-8:53-65.Schlumberger,1988.
[41]Brudy M, Zoback M D, Fuchs K, et al. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes—Implications for crustal strength [J].Journal of Geophysical Research, 1997, 102: 18 453-18 475.
[42]Chabernaud T J. High-resolution electrical imaging in the New Hebrides Island Arc: Structural analysis and stress studies[C]Greene H G, Collot J-Y, Stokking L B, et al,eds. Proceedings of the Ocean Drilling Program, Scientific Results, 134. Texas: Texas A&M University, 1994: 591-606.
[43]Basile C, Ginet J M, Pezard P. Post-tectonic subsidence of the Côte d′Ivoire-Ghana marginal ridge: Insights from FMS data[C]Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 159. Texas: Texas A&M University, 1998: 81-91.
[44]Ask M. In situ stress at the Côte d′Ivoire-Ghana marginal ridge from FMS logging in Hole 959D[C]Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 159. Texas: Texas A&M University, 1998: 209-223.
[45]Flecker R, Kopf A, Jurado-Rodríguez M J. Structural evidence for the nature of hiatal gaps in the upper Cretaceous to Holocene succession recovered from the Eratosthenes Seamount[C]Robertson A H F, Emeis K-C, Richter C, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 160. Texas: Texas A&M University, 1998: 517-526.
[46]Jurado-Rodriguez M J, Brudy M. Present-day stress indicators from a segment of the African-Eurasian plate boundary in the Eastern Mediterranean Sea: Results of formation microscanner data[C]∥Robertson A H F, Emeis K-C, Richeter C, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 160. Texas: Texas A&M University, 1998: 527-534. 
[47]De Larouzière F D, Pezard P A, Comas M C, et al. Structure and tectonic stresses in metamorphic basement, Site 976, Alboran Sea[C]Zahn R, Comas M C, Klaus A, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 161. Texas: Texas A&M University, 1999: 319-329. 
[48]Basile C. Late Jurassic sedimentation and deformation in the west Iberia continental margin: Insights from FMS data, ODP Leg 173 [J]. Marine and Petroleum Geology, 2000, 17: 709-721.
[49]Houtz R, Ewing J. Upper crustal structure as a function of plateage[J]. Journal of Geophysical Research,1976, 81: 2 490-2 498.
[50]Harvey P K, Brewer T S, Goldberg D, et al. Architecture of the oceanic basement: The contribution of wireline logging[C]Lovell M, Parkinson N,eds. Geological Applications of Well Logs. AAPG Methods in Exploration, 13, 2002: 199-211.
[51]Brewer T S, Harvey P K, Haggas S, et al. Borehole images of the ocean crust: Case histories from the Ocean Drilling Program[C]∥Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London: The Geological Society of London Special Publication 159, 1999: 283-294. 
[52]Pezard P A, Becker K, Revil A, et al. Fractures, porosity, and stress in the dolerites of Hole 504b, Costa Rica Rift[C]Alt J C, Kinoshita H, Stokking L B, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 148. Texas: Texas A&M University, 1996: 317-329.
[53]Ayadi M, Pezard P A, Laverne C, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, I: Stratigraphy of eruptive products and accretion processes[C]∥Harvey P K, Lovell M A, eds. Core-Log Integration. London:The Geological Society of London Special Publication 136,  1998: 297-310. 
[54]Ayadi M, Pezard P A, Bronner G, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, III: Faulting and fluid circulation. Constraints from integration of FMS images, geophysical logs and core data[C]Harvey P K, Lovell M A,eds. Core-Log Integration. London: The Geological Society of London Special Publication 136,  1998: 311-326.
[55]Tartarotti P, Ayadi M, Pezard P A, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, II: fracturing and alteration. An integrated study from core, downhole measurements and borehole wall images[C]Harvey P K, Lovell M A, eds. Core-Log Integration. London: The Geological Society of London Special Publication 136, 1998: 391-412.
[56]De Larouziere F D, Pezard P A, Ayadi M, et al. Downhole measurements and electrical images in Hole 896a, Costa Rica Rift[C]Alt J C, Kinoshita H, Stokking L B, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 148. Texas: Texas A&M University, 1996: 375-388.
[57]Brewer T S, Harvey P K, Lovell M A, et al. Ocean floor volcanism: Constraints from the integration of core and downhole logging measurements[C]Harvey P K, Lovell M A, eds. Core-Log Integration. London: The Geological Society of London Special Publication 136,  1998: 341-362. 
[58]Miller D J, Iturrino G J, McGuire J C. Core-log correlations in oceanic basement from Hole 1105A on the Southwest Indian Ridge[C]Casey J F, Miller D J, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 179. Texas: Texas A&M University, 2003: 1-29.
[59]Linek M, Jungmann M, Berlage T, et al. Rock classification based on resistivity patterns in electrical borehole wall images[J]. Journal of Geophysics and Engineering,2007, 4: 171-183.
[60]Jungmann M, Kopal M, Clauser C, et al. Multi-class supervised classification of electrical borehole wall images using texture features[J].Computers & Geosciences, 2011, 17: 541-553.

[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[4] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[5] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[6] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[7] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[8] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[9] 解国爱,王宗秀,张庆龙,吕赟珊,邹旭. 江西永平铜矿区古构造应力场与构造演化[J]. 地球科学进展, 2013, 28(5): 608-617.
[10] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[11] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[12] IODP-China通讯员. 2013年后的大洋钻探——从INVEST会议看学科前沿[J]. 地球科学进展, 2009, 24(12): 1325-1329.
[13] 汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
[14] 刘志飞,拓守廷. IODP计划的新进展[J]. 地球科学进展, 2009, 24(12): 1318-1324.
[15] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
阅读次数
全文


摘要