地球科学进展 ›› 1999, Vol. 14 ›› Issue (5): 505 -512. doi: 10.11867/j.issn.1001-8166.1999.05.0505

全球变化研究 上一篇    下一篇

珊瑚的古环境信息研究进展
何学贤 ,彭子成 ,王兆荣 ,聂宝符 ,安芷生   
  1. ①中国科技大学地球和空间科学系,安徽 合肥 230026;②中国科学院南海海洋研究所,广东 广州 510310;③中国科学院黄土与第四纪地质国家重点实验室,陕西 西安 710054
  • 收稿日期:1999-01-04 修回日期:1999-04-05 出版日期:1999-10-01
  • 通讯作者: 何学贤,男,1964年10月出生,博士生,地球化学专业。
  • 基金资助:

    中国科学院“九五”重大项目“亚洲季风气候变迁与全球变化”(编号:KZ951-A1-402)和国家自然科学基金项目“南海北部珊瑚礁δ18O与SST和季风的年/年代变率研究”(编号:49776307)资助。

ADVANCE IN STUDY ON PALEO-ENVIRONMENTAL INFORMATION IN CORAL

HE Xuexian ,PENG Zicheng ,WANG Zhaorong ,NIE Baofu ,AN Zhisheng
  

  1. ①Department of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;②South China Sea Institute of oceanography,the Chinese Academy of Science,Guangzhou 510310,China;③State Key Laboratory of Loess and Quaternary Geology,the Chinese Academy of Science,Xi'an 710054,China
  • Received:1999-01-04 Revised:1999-04-05 Online:1999-10-01 Published:1999-10-01

珊瑚由于有独特的生物学和生态学特性,成为研究热带海洋环境的信息载体。珊瑚骨骼“年轮”的发现和TIMS铀系法高精度测年的应用奠定了珊瑚时间序列研究的基础,珊瑚骨骼的生长率、钙化率以及其中所含的元素、同位素成为示踪环境的重要手段。系统地评述了近年来这方面研究的进展情况,包括珊瑚骨骼的生长率、钙化率的环境意义;δ18O、Sr/Ca、Mg/Ca、U/Ca温度计的应用比较;珊瑚的荧光研究;以及TIMS铀系法测年等。这些研究反映出珊瑚作为研究热带海洋环境的信息载体的重要性,以及不同的地球化学代用指标的应用前景。

The study on the paleo-environmental significance in the alive and fossil corals has became a key point in the projects of the past global change. The advance in this field including environmental information of growth rate and calcification rate in coral skeletons, high resolution ofδ18O, Sr/Ca, Mg/Ca and U/Ca paleo-thermometer, research on the fluorescent bands and high precision of TIMS uranium series dating and so on, were systematically described in the paper. That reflects the coral as an important role in reconstruction of the past records of the tropical ocean environment .

中图分类号: 

〔1〕Knutson D W, Buddemeier R W, Smith S V. Coral Chronometers: seasonal growth bands in reef corals〔J〕. Science,1972, 177: 270~272.
〔2〕Lough J M, Barnes D J, Taylor R B.The potential of massive corals for the study of high-resolution climate variation in the past millennium〔A〕. Climate Variation and Forcing Mechanisms of the Last 2 000 Year〔C〕. In:Jones Philip D,Bradley Raymond S, Jouzel Jean eds. NATO ASI Series.Berlin, Heidelberg:Springer Verlag ,1996.
〔3〕Edwards R L, Chen J H, Wasserburg G J.238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500 000 years〔J〕. Earth and Planetary Science Letters.1986,81:175~192.
〔4〕Lough J M, Barnes D J. Several centuries of variation in skeletal extension,density and calcification in massive Porites colonies from the Great Barrier Reef:A proxy for seawater temperature and a background of variability against which to identify unnatural change〔J〕. Journal of Experimental Marine Biology and Ecology, 1997,211:29~67.
〔5〕聂宝符,陈特固,梁美桃,等.南沙群岛及其邻近礁区造礁珊瑚与环境变化的关系〔M〕.北京:科学出版社, 1997.
〔6〕Barnes D J, Lough J M. The nature of skeletal density banding in scleractinian corals: fine banding and second patterns〔J〕. Journal of Experimental Marine Biology and Ecology,1989, 129:119~134.
〔7〕Dodge R E, Brass G W. Skeletal extention, density and calcification of the rest coral, Montastrea annularis: St Croix,U S Virgin Islands〔J〕. Bull Mar Sci, 1984,34: 288~307.
〔8〕Chalker B E, Barnes D J, Isdale P J. Calibration of X-ray densitometry for the measurement of coral skeletal density〔J〕. Coral Reefs,1985, 4: 95~100.
〔9〕Chalker B E, Barnes D J. Gamma densitometry for the measurement of coral skeletal density〔J〕. Coral Reefs,1990,4: 95~100.
〔10〕Lough J M, Barnes D J. Possible relationships between environment variables and skeletal density in a coral from the central Great Barrier Reef〔J〕. J Exp Mar Biol Ecol,1990, 134:221~241.
〔11〕Huston M. Variations of coral growth rates with depth at Discovery Bay,Jamaica〔J〕.Coral Reefs, 1985, 4:19~25.
〔12〕Epstein S, Buchsbaum R, Lowenstam H A,et al. Revised carbonate-water isotopic temperature scale〔J〕.Bull Geol Soc Amer,1953,64:1 315~1 326.
〔13〕Weil S M ,Buddemeier R E, Smith S V,et al. The stable isotopic composition of coral skeletons: control by environmental variables〔J〕. Geochimica et Cosmochimica Acta,1981, 45:1 147~1 153.
〔14〕McConnaughey T A.13C and18O isotopic disquilibria in biological carbonate——1. Patterns〔J〕. Geochimca et Cosmochimica Acta, 1989, 53: 151~162.
〔15〕McCulloch M T , Gagan M K, Mortimer G E,et al. A high-resolution Sr/Ca and O coral record from the Great Barrier reef, Australia, and the 1982-1983 El Nin~o〔J〕. Geochimica et Cosmochimica Acta, 1994, 58: 2 747~2 854.
〔16〕Cole J E, Fairbanks R G, Shen G T. Recent variability in the Southern Oscillation:Isotopic results from a Tarawa Atoll coral〔J〕. Science, 1993,260: 1 790~1 793.
〔17〕Beck J W, Edwards R L, Ito E,et al. Sea-surface temperature from coral skeletal strontium/calcium ratios〔J〕. Science,1992,257: 644~647.
〔18〕Mitsuguchi T, Matsumoto E, Abe O,et al. Mg/Ca Thermometry in Coral Skeletons〔J〕.Science, 1996, 274: 961~963.
〔19〕Min G R, Edwards R L, Taylor F W,et al. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry〔J〕.Geochimica et Cosmochimica Acta, 1995, 59: 2 025~2 042.
〔20〕Carriquiry J D, Risk M J, Schwarcz H P. Timing and temperature record from stable isotopes of the 1982~1983 EL Nin~o warming event in East Pacific corals〔J〕. Palaeos,1988, 3: 359~364
〔21〕Shen G T, Cole J E, Lea S W A,et al. Surface ocean variability at Galapagos from 1936~1982: calibration of geochemical tracers in corals〔J〕. Paleoceanography, 1992,5: 563~588.
〔22〕Gagan M K, Chivas A R, Isdale P J. High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers〔J〕. Earth and Planetary Science Letters,1994,121: 549~558.
〔23〕Tudhope A W, Shimmield G B, Chilcott C P,et al. Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; Oxygen isotope records from massive corals, Papua New Guinea〔J〕.Earth and Planetary Science Letters, 1995, 136: 575~590.
〔24〕Wellington G M, Dunbar R B, Merlen G. Calibration of stable oxygen isotope signatures in Galapagos corals〔J〕.Paleoceanography, 1996,11: 467~480.
〔25〕Wilson T R S. Salinity and the major elements of sea water〔A〕. In: Rilly J P, Skirrow G eds. Chemical Oceanography〔C〕. 2nd Edition,Volume 1 Academy Press,1975. 365~414.
〔26〕de Villiers S, Nelson B K, Chivas A R. Biological controls on coral Sr/Ca andδ18O reconstructions of sea surface temperatures〔J〕. Science, 1995, 269: 1 247~1 249.
〔27〕Shen C C, Lee T, Chen C Y,et al. The calibration of D (Sr/Ca) versus sea temperature relationship for porites corals〔J〕. Geochimica et Cosmochimica Acta, 1996, 60:3 846~3858.
〔28〕Broecker W S, Peng T H . Tracers in the sea〔M〕. New York: Lamont-Doherty Geological Observatory, Columbia University,1982.
〔29〕Guilderson T P, Fairbanks R G, Rubenstone J L. Tropical temperature variations since 20 000 years ago: Modulating inter-hemispheric climate change〔J〕. Science, 1994, 263:663~665.
〔30〕McCulloch M, Mortimer G, Esat T,et al. High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula〔J〕. Earth and Planetary Science Letters, 1996, 138: 169~178.
〔31〕de Villiers S, Shen G T, Nelson B K. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in ( Sr/Ca ) seawater and skeletal growth parameters〔J〕. Geochimica et Cosmochimica Acta,1994,58: 197~208.
〔32〕Schifano G. Temperature-magnesium relations in the shell carbonate of some modern marine gastropods〔J〕.Chem Geol,1982, 35: 321~332.
〔33〕韦刚健,李献华,聂宝符,等.南海北部滨珊瑚高分辨率Mg/Ca温度计〔J〕.科学通报,1998,43:1 658~1 661.
〔34〕Chan J H, Edwards R L, Wasserburg G J.238U,234U and 230Th in seawater〔J〕. Earth and Planetary Science Letters,1986, 80:241~251.
〔35〕Shen G T, Dunbar R B. Environmental controls on uranium in reef corals〔J〕. Geochimica et Cosmochimica Acta, 1995,59: 2 009~2 024.
〔36〕Isdale P. Fluorescent bands in massive corals record centuries of coastal rainfall〔J〕. Nature, 1984, 310: 578~579.
〔37〕Boto K, Isdale P. Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone〔J〕.Nature, 1985, 315: 396~397.
〔38〕Klein R, Loya Y, Gvirtzman G,et al. Seasonal rainfall in the Sinai desert during the late Quaternary inferred from fluorescent bands in fossil corals〔J〕. Nature, 1990, 345:145~147.
〔39〕Susic M, Boto K, Isdale P. Fluorescent humic acid bands in copal skeletons originate from terrestrial runoff〔J〕. Mar Chem, 1991, 33: 91~104.
〔40〕Smith T J, Hudson J H, Robblee M B,et al. Freshwater flow from the Everglades to Florida Bay: A historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni〔J〕. Bull of Mar Science, 1989, 44(1):274~282.
〔41〕Fang L S, Chou Y C. Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation〔J〕. Coral Reefs, 1992, 11: 187~191.
〔42〕Scoffin T P, Tudhope A W, Brown B E. Fluorescent and skeletal density banding in Porites lutea from Papua New Guinea and Indonesia〔J〕. Coral Reefs, 1989, 7: 169~178.
〔43〕Shen G T, Boyle E A. Lead in corals:reconstruction of historical industrial fluxes to the surface ocean〔J〕.Earth and Planetary Science Latters,1987, 82: 289~340.
〔44〕Shen G T, Boyle E A, Lea D W. Cadmium in corals as tracer of historical upwelling and industrial fallout〔J〕. Nature,1987, 328: 794~796.
〔45〕Sunda W G, Huntman S A. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea〔J〕.Deep-Sea Res,1988, 35: 1 297~1 317.
〔46〕Landing W M, Bruland K W. The Contrasting Biogeo-chemistry of Iron and Manganese, Cadmium and Lead〔M〕.M A thesis, Univ. California, 1987.
〔47〕Delaney M L, Linn L J, Druffel E R M. Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands〔J〕. Geochimica et Cosmochimica Acta, 1993, 57: 347~354.
〔48〕Lea D W, Shen G T, Boyle E A. Coralline barium records temporal variability in equatorial Pacific upwelling〔J〕.Nature, 1989, 340: 373~376.
〔49〕Shen G T, Sanford C L. Trace element indicators of climate variability in reef-building corals〔A〕. In:Glynn Elsevier ed.Global Ecological Consequences of the 1982~1983〔C〕.1990. 255~283.
〔50〕Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater : ICP-MS determinations in the East Caroline,Coral Sea and South Fiji basins of the western South Pacific Ocean〔J〕. Geochimica et Cosmochimica Acta, 1996, 60: 4631~4 644.
〔51〕De Baar H J W, Bacon M P, Brewer P G. Rare earth distributions with a positive cerium anomaly in the western North Atlantic Ocean〔J〕. Nature, 1983, 301: 324~327.
〔52〕Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral〔J〕. Geochimica et Cosmochimica Acta, 1995, 59(13):2 749~2 756.
〔53〕German C R, Elderfield H. Application of the cerium anomaly as a paleo-redox indicator: the ground rules〔J〕.Paleoceanography, 1990, 5: 823~833.
〔54〕Spivack C F, Tou, Smith I. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr〔J〕. Nature , 1993, 363: 149~151.
〔55〕Jerome Gaillardet, Claude Jean Allegre. Boron isotopic compositions of corals: Seawater or diagenesis record〔J〕.Earth and Planetary Science Letters, 1995, 136: 665~676.
〔56〕刘卫国,彭子成,肖应凯,等.南海珊瑚硼同位素组成及古环境意义〔J〕.地球化学,1999(待刊).
〔57〕Edwards R L, Chen J H, Ku T L,et al. Precise timing of the last interglacial period from mass spectrometric determination of Thorium-230 in corals〔J〕. Science,1987,236: 1 547~1 553.
〔58〕Bard E, Hamelin B, Fairbank R G. U-Th ages obtained by mass spectrometry in corals from Barbados:sea level during the past 130 000 years〔J〕.Nature, 1990, 346: 456~458.
〔59〕Stirling C H, East T M, McCulloch M T,et al. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial〔J〕.Earth and Planetary Science Letters, 1995,135: 115~130.
〔60〕彭子成.第四纪年龄测定的新技术——热电离质谱铀系法的发展近况〔J〕.第四纪研究, 1997,(3): 258~263.
〔61〕彭子成,王兆荣,孙卫东,等.高精度热电离质谱(TIMS)铀系法对第四纪标样年龄测定的研究〔J〕.科学通报,1997, 42: 2090~2 093.
〔62〕马志邦,夏明,张承惠,等.南海全新世珊瑚礁的高精度热电离质谱(TIMS)铀系年龄研究〔J〕.科学通报,1998,43: 2 225~2 228.
〔63〕马志邦,夏明,王兆荣,等. Barbados岛末次间冰期珊瑚礁高精度铀系年龄及古气候意义〔J〕.地质科学,1999,34(1):116~122.

[1] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[2] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[3] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[4] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[5] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[6] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[7] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[8] 芮晓庆, 刘传联, 李志明. 颗石藻室内培养及应用研究进展[J]. 地球科学进展, 2014, 29(11): 1303-1313.
[9] 李祥辉,陈云华,徐宝亮,AkihiroKano,ChizuruTakashima. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
[10] 王圆圆,刘志刚,李京,陈云浩. 珊瑚礁遥感研究进展[J]. 地球科学进展, 2007, 22(4): 396-402.
[11] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
[12] 齐文同. 石珊瑚目的早期系统发育和系统分类研究[J]. 地球科学进展, 2007, 22(10): 1094-1098.
[13] 刘羿,彭子成,周静,贺剑峰,江玉平,刘桂建. 热带珊瑚的高分辨率环境信息与全球变化研究进展[J]. 地球科学进展, 2006, 21(4): 383-393.
[14] 孙宗勋,黄鼎成. 珊瑚礁工程地质研究进展[J]. 地球科学进展, 1999, 14(6): 577-581.
阅读次数
全文


摘要