地球科学进展 ›› 2007, Vol. 22 ›› Issue (4): 396 -402. doi: 10.11867/j.issn.1001-8166.2007.04.0396

综述与评述 上一篇    下一篇

王圆圆 1,刘志刚 2,李 京 1,陈云浩 1   
  1. 1.北京师范大学资源学院;2.北京师范大学地理与遥感科学学院,北京 100875
  • 收稿日期:2006-08-09 修回日期:2007-03-05 出版日期:2007-04-10
  • 通讯作者: 王圆圆(1981-),女,安徽六安人,博士研究生,主要从事珊瑚礁高光谱遥感.E-mail: wangyuanyuan@ires.cn E-mail:wangyuanyuan@ires.cn
  • 基金资助:


A Review of Coral Reef Remote Sensing

WANG Yuan-yuan 1,LIU Zhi-gang 2,LI Jing 1,CHEN Yun-hao 1   

  1. 1.College of Resources Science, Beijing Normal University,Beijing 100875,China;2. College of Geography and remote sensing, Beijing Normal University,Beijing 100875,China
  • Received:2006-08-09 Revised:2007-03-05 Online:2007-04-10 Published:2007-04-10


Global coral reef ecosystems degrade quickly as a result of disturbances from climate change and human activities. Getting knowledge of coral reef benthic cover through remote sensing is of great importance to coral reef management and protection. A significant problem involved with remote sensing of submerged coral reef ecosystems is that water column overlying the substrate significantly affects the remotely sensed signal due to optical attenuation of light in water. Water depth, water quality, tidal variability, surface roughness, spectral similarity of various substrata, as well as spatial heterogeneity, combine to limit the accuracy with which remote sensing can be used to identify coral reef substrate type. In this article, international research work in coral reef remote sensing field were reviewed and five main topics were summarized and expounded, which were separabiltiy analysis of substrate spectral reflectance, water correction methods, spectral unmixing modeling and methods, remote sensing images classification and change detection. Research results acknowledge that classification of benthic covers, especially at fine levels, needs high spectral resolution. When spectral information is not enough, utilizing spatial information can be expected to give improvements. Optical remote sensors usually fail to get coral reef information as a result of their limited ability of water penetration and cloud contamination. Based on the understanding of coral reef remote sensing status, prospects of future development were put forward. They include as follows: hyperspectral data will be used more frequently due to their more accessibility; spatial information, including textural and contextual information, would be attached with greater importance in order to enhance classification and change detection accuracy; much more efforts need to be devoted to improving theoretical physical models of coral reef remote sensing; optical sensors can be combined with acoustic sensors; optical sensors especially to monitor coral reef environments should be designed and launched. 


[1]Wang Guozhong. Global climatic changes and coral reefs [J]. Marine Geology Letters,2004,20(1):8-13.[王国忠. 全球气候变化与珊瑚礁问题 [J]. 海洋地质动态,2004,20(1):8-13.]
[2]Cal K A, John T Hardy, David O Wallin. Coral reef habitat discrimination using multivariate spectral analysis and satellite remote sensing [J]. International Journal of Remote Sensing, 2003, 24 (13): 2 627-2 639.
[3]Hochberg E J,Atkinson M J. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra [J]. Remote Sensing of Environment, 2003, 85: 174-189.
[4]Holden H, LeDrew E. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principle components analysis, and derivative spectroscopy [J]. Remote Sensing of Environment, 1998, 65: 217-224.
[5]Lubin D, Wei Li, Dustan P, et al. Spectral signatures of coral reefs: Features form space[J].Remote Sensing of Environment,2001, (75): 127-137.
[6]Hochberg E J, Atkinson M J, Andréfouët S. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing[J].Remote Sensing of Environment, 2003,(85): 159-173.
[7]Andréfouët S, Riegl B. Remote sensing: A key tool for interdisciplinary assessment of coral reef processes[J]. Coral Reefs,2004, (23): 1-4.
[8]Maeder J, Narumlani S, Rundquist D C, et al. Classifying and mapping general coral-reef structure using Ikonos data[J].PE & RS,2002, 68(12): 1 297-1 305.
[9]Heather H, LeDrew E. Measuring and modeling water column effects on hyperspectral in a coral reef environment[J].Remote Sensing of Environment,2002,(81): 300-308.
[10]Hochberg E J, Andréfouët S, Tyler M R. Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments[J].IEEE Transaction on Geoscience and Remote Sensing,2003, 41(7):1 724-1 729.
[11]Holden H, Ledrew E. Hyperspectral identification of coral reef features [J].International Journal of Remote Sensing,1999, 20(13):2 545-2 563.
[12]Clark C D, Mumby P J, Chisholm J R M, et al. Spectral discrimination of coral mortality states following a server bleaching event [J].International Journal of Remote Sensing,2000, (21):2 321-2 327.
[13]Joyce K E, Phinn S R. Bi-directional reflectance of corals [J].International Journal of Remote Sensing,2002, (23): 389-394.
[14]Ahmad W, Neil D. An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR) [J].International Journal of Remote Sensing,1994, 15(13):2 583-2 597.
[15]Purkis S, Kenter J A M, Oikonomou E K,et al. High-resolution ground verification, cluster analysis and optical model of reef substrate coverage on Landsat TM imagery (Red Sea, Egypt) [J].International Journal of Remote Sensing,2002, 23 (8): 1 677-1 698.
[16]Andréfouët S, Kramer P, Damaris T P, et al. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments [J].Remote Sensing of Environment,2003,88:128-143.
[17]Mumby P J, Edwards A J. Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy [J].Remote Sensing of Environment,2002,(82):248-257.
[18]Mumby P J, Clark C D, Green E P. Benefits of water column correction and contextual editing for mapping coral reefs [J].International Journal of Remote Sensing,1998, 19: 203-210.
[19]Bouvet G, Ferraris H, Andréfouët S. Evaluation of large-scale unsupervised classification of new Caledonia reef ecosystems using Landsat 7 ETM+ imagery [J].Oceanologica Acta,2003, (26): 281-290.
[20]Andréfouët S, Roux L, Chancerelle Y,et al. A fuzzy possibilistic scheme of study for objects with indeterminate boundaries: Application to French Polynesian reefscape [J]. IEEE Transaction on Geoscience and Remote Sensing,2000, 38 (1): 257-270.
[21]Purkis S J, Myint S W, Bernhard M. Riegl. Enhanced detection of the coral Acropora cervicornis from satellite imagery using a textural operator [J]. Remote Sensing of Environment,2006, (101): 82-94.
[22]Holden H, LeDrew E. Hyperspectral linear mixing based on in situ measurements in a coral reef environment [J]. IEEE Transaction on Geoscience and Remote Sensing, 2002,40(1):249-250.
[23]Mumby P J, Skirving W, Alan Strong E, et al. Remote sensing of coral reefs and their physical environment [J].Marine Pollution Bulletin,2004, (48): 219-228.
[24]Hedley J D, Mumby P J. A Remote sensing method for resolving depth and Subpixel composition of aquatic benthos [J].Limnology and Oceanography,2003, 48(1, part2), 480-488.
[25]Palandro D, Andréfouët S, Dustan P, et al. Change detection in coral reef communities using IKONOS satellite sensor imagery and historic aerial photographs[J].International Journal of Remote Sensing,2003, 24 (4): 873-878.
[26]LeDrew E, Holden H, Wulder M A, et al. A spatial statistical operator applied to multidate satellite imagery for identification of coral reeef stress [J]. Remote Sensing of Environment,2004,91:271-279.
[27]Yamano H, Tamura M. Detection limits of coral reef bleaching by satellite remote sensing: Simulation and data analysis [J].Remote Sensing of Environment,2004,(90): 86-103.
[28]Goodman J A, Ustin S L. Hyperspectral image calibration in a coral reef environment: An empirical approach [J].IEEE Transaction on Geoscience and Remote Sensing,2002,40(1):243-245. 
[29]Maritorena S, Morel A, Gentili B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo[J].Limnology Oceanography,1994,(39):1 689-1 703.
[30]Lyzenga D R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data [J].International Journal of Remote Sensing,1981, (2): 71-82.
[31]Maritorena S. Remote sensing of the water attenuation in corl reefs: A case study in French Polynisea [J].International Journal of Remote Sensing,1996, 17(1):155-166.
[32]Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization [J].Applied Optics,1999,(38):3 831-3 843.
[33]Hochberg E J, Atkinson M J. Spectral discrimination of coral reef benthic communities [J].Coral Reefs,2000, 19(2): 164-171.
[34]White W H, Harborne A R, Sotheran I S, et al. Using an acoustic ground discrimination system to map coral reef benthic classes [J].International Journal of Remote Sensing,2003, 24(13):2 641-2 660.
[35]Riegl B M, Purkis S J. Detection of shallow subtidal corals form IKONOS satellite and QTC view (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE) [J].Remote Sensing of Environment,2005, (95): 96-114.
[36]Holden H, LeDrew E. The scientific issues surrounding the remote detection of submerged coral ecosystems [J].Progress in Physical Geography,1997,22:190-221.
[37]Tao Siming. Coral reef ecosystems and its sustainable using [J].Environmental Protection,1999,(6):32-35.[陶思明. 珊瑚礁生态系统及其可持续利用[J].环境保护,1999,(6):32-35.]

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[9] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[10] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[11] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[12] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[13] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[14] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
[15] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.