地球科学进展 ›› 2009, Vol. 24 ›› Issue (3): 320 -330. doi: 10.11867/j.issn.1001-8166.2009.03.0320

“平流层过程及其对东亚天气气候的作用”专辑 上一篇    下一篇

利用卫星数据考察平流层传播性行星波活动特征
陈泽宇,吕达仁   
  1. 中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029
  • 收稿日期:2009-01-19 修回日期:2009-02-20 出版日期:2009-03-10
  • 通讯作者: 陈泽宇 E-mail:z.chen@mail.iap.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“全大气层(对流层—平流层—中间层—电离层/热层)动力耦合研究”(编号:KZCX2-YW-123);国家自然科学基金面上项目“台风诱发大气重力波的机制研究”(编号:40875017);国家自然科学基金重点项目“平流层—对流层多尺度耦合及其与天气气候关系研究”(编号:40333034)资助.

Characteristics of the Stratospheric Travelling Planetary Waves Revealed by Using Satellite Data

Chen Zeyu, Lv Daren   

  1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2009-01-19 Revised:2009-02-20 Online:2009-03-10 Published:2009-03-10

       中层大气是大气波动盛行的区域。这些波动不仅是这里大气扰动的主要形态,伴随其传播的耗散成为作用在背景流场上的动力强迫和作用于环境物质上的湍流混合,影响到了中层大气的各个方面,尤其对一些典型环流结构的形成起着控制作用。简要地回顾了这个研究领域发展的历史。与此同时,利用美国卫星温度探测数据(SABER/TIMED温度数据)考察了平流层(20~70 km高度范围)传播性行星波活动的整体性质,给出了他们的空间分布和年变化形式。利用温度标准差(T-SDEV)代表行星波活动的强度,当前研究显示无论在热带外地区或以赤道为中心的热带地区,全年传播性行星波活动都是相当显著的。结合同期定常行星波活动强度分析结果,通过比较说明在热带外地区,传播性波动和定常波动表现出相近的季节活动性;从T-SDEV数值看,在定常波活动达到最强的季节(冬末春初),这两类波动活动的强度达到了相当的程度(TSDEV=12~14 K)。当前结果还显示,在定常波活动受到显著抑制的夏季条件下,传播性波动成为平流层行星波活动的主导成分。在赤道地区的分析结果表明传播性波动是这里的控制性波动,并且其活动强度在全年都处在相当稳定的状态;T-SDEV分析结果还给出了一个值得关注的现象,从平流层下部开始(20 km高度)逐渐随高度增大(大于2 K),但是这种随高度增长的趋势在30 km高度左右突然终止;从30 km开始直到中间层底部,T-SDEV几乎不随高度变化,这隐含地说明这里的波动处于一种饱和的状态。

        The middle atmosphere is characterized by the prevalence of atmospheric waves. The waves predominate the major variability in the area. The waves also play the role of controlling the various key aspects of the middle atmosphere through wave damping in the propagation of waves, e.g., exerting mechanical drag on mean flow and causing turbulent diffusion on constituent, in particular in shaping the structures of the general circulations. A brief retrospect in the development in these researches is provided at first. Meanwhile, the temperatures collected by a satellite mission (SABER/TIMED) are used to investigate the property of travelling planetary waves (PWs) in the stratospheric portion (20~70 km). In terms of the standard deviation of temperature, the variability of the wave family is observed, and the annual variation and latitude-height distribution of the variability are presented. The travelling waves are found to be prominent both in the low latitudes as well as in the extra-tropical area. As to extra-tropical area, by comparing to the concurrent variability of stationary PWs retrieved by using the same dataset, both the travelling and the stationary waves exhibit clear annual cycle attaining maximal variability in the late-winter and early-spring (LWES), with T-SDEV of 12~14 K. Moreover, during the summer time when the stationary PWs are strongly depressed, travelling PWs are instead to be the predominant perturbations of planetary scale. Estimation results in terms of T-SDEV show that during the yearly course, the travelling PWs are steadily the predominant waves. Among all the features of the waves, the vertical variation of T-SDEV suggests that the waves are subject to be saturated. For example, the T-SDEV increases with height from 20 km to 30 km, but from 30 km to the bottom of the mesosphere, the feature is replaced by a phenomenon that the T-SDEV exhibits independence of height. 

中图分类号: 

[1] Pendlebury D, Shepherd T G, Pritchard M, et al. Normal mode Rossby waves and their effects on chemical composition in the last summer stratosphere[J].Atmospheric Chemistry and Physics,2008, 8:1 925-1 935.
[2] Garcia R R, Randel W J. Acceleration of the brewer-dobson circulation due to increases in greenhouse gases[J].Journal of Atmospheric Sciences, 2008,65(8):2 731-2 739.
[3] Lü Daren, Chen Zeyu, Bian Jianchun, et al. Advances in the research of the characteristics of the multi-scale processes of the interaction in between the atmospheric layers and its relations with weather and climate[J].Chinese Journal of Atmospheric Sciences,2008, 32(4): 782-793.[吕达仁,陈泽宇,卞建春,等. 平流层—对流层相互作用的多尺度过程特征及其与天气气候关系—研究进展[J]. 大气科学,2008,32(4): 782-793.]
[4] Chen Zeyu, Chen Hongbin, Chen Wen, et al. Advances in the researches in middle and upper atmosphere in 2006-2008[J].Chinese Journal of Space Sciences, 2008, 28(5): 60-71.
[5] Lü Daren, Chen Hongbin. Advances in middle atmosphere physics research[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4):750-769.
[6] Holton J R. Role of gravity-wave-induced drag and diffusion in the momentum budget of the mesosphere[J].Journal of Atmos pheric Sciences,1982, 39(4): 791-799.
[7] Holton J R. Influence of gravity wave breaking on the general circulation of the middle atmosphere[J].Journal of Atmospheric Sciences,1983, 40(10): 2 497-2 507.
[8] Garcia R R. Parameterization of planetary wave breaking in the middle atmosphere[J].Journal of Atmospheric Sciences,1991, 48:1 405-1 419.
[9] Garcia R R, Stordal F, Solomon S, et al. A new numerical model of the middle atmosphere I. Dynamics and transport of tropospheric source gases[J].Journal of Geophysical Research, 1992, 97: 12 967-12 991.
[10] Baldwin M P,Gray L J, Dunkerton T J, et al. The quasi-biennial oscillation[J].Reviews of Geophysics, 2001, 39: 179-229.
[11] Charney J G, Drazin P G. Propagation of planetary-scale disturbances from the lower into the upper atmospheric[J].Journal of  Geophysical Research, 1961, 66(1): 83-109.
[12] Dickinson R E. On the exact and approximate linear theory of vertically propagating planetary waves forced at a spherical lower boundary[J].Monthly Weather Review,1968, 96: 405-415.
[13] Dickinson R E. Theory of planetary wave  zonal flow interaction[J].Journal of Atmospheric Sciences, 1969, 26:73-81.
[14] Matsuno T. Vertical propagation of stationary planetary waves in the winter northern hemisphere[J].Journal of Atmospheric Sciences, 1970, 27: 871-883.
[15] Dickinson R E. On the excitation and propagation of zonal winds in an atmosphere with newtonian cooling[J].Journal of Atmospheric Sciences,1968, 25:269-279.
[16] Haynes P H, McIntyre M E. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and friction or other forces[J].Journal of Atmospheric Sciences,1987, 44: 828-841.
[17] Haynes P H, Marks C J, McIntyre M E, et al. On the “downward control”of extatropical diabatic circulation by eddy-induced mean zonal forces[J].Journal of Atmospheric Sciences, 1991, 48:651-678.
[18] Garcia R R, Boville B. “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere[J].Journal of Atmospheric Sciences,1994, 51: 2 238-2 245.
[19] Holton J R, Haynes P H, McIntyre M E, et al. Stratospheretroposphere exchange[J]. Reviews of Geophysics,1995, 33:403-439.
[20] Baldwin M P, Dameris M, Shepherd T G. How will the stratosphere affect climate change?[J].Science,2007, 316:1 576.
[21] Li Q, Graf H G, Giorgetta M A. Stationary planetary wave propagation in Northern Hemisphere winterclimatological analysis of the refractive index[J].Atmospheric Chemistry and Physics, 2007, 7:183-200.
[22] Mclandress C, Ward W, Formichev V, et al. Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended canadian middle atmosphere model[J].Journal of Geophysical Research, 2006, 111, D17111, doi:10.1029/2005JD006776.
[23] Russell J, Mlynczak M, Gordley L, et al. An overview of the saber experiment and preliminary calibration results[C]//Allen M Larar, ed. Proceeding of SPIE. Denver: SPIE, 1999,3 756: 277-288.
[24] Remsberg E E, Marshall B T, Garcia-Comas M, et al. Assessment of the quality of the version 1.07 temperature versus pressure profiles of the middle atmosphere from TIMED/SABER[J].Journal of Geophysical Research,2008, 113, D17701,doi:10,1029/2008JD010013.
[25] Chen Zeyu, Lü Daren. Seasonal variations of the MLT tides in 120°E Meridian[J].Chinese Journal of Geophysical, 2007,50(3):691-700.[ 陈泽宇,吕达仁.东经120度中间层和低热层大气潮汐及其季节变化特征[J]. 地球物理学报,2007,50(3):691-700.]
[26] Chen Zeyu, Lü Daren. Satellite remote sensing of the characteristics of the MLT mean temperatures in the 120°E meridian: The mesopause[J].Chinese Journal of Geophysical,2008, 51(4):982-990.[陈泽宇,吕达仁.卫星遥感东经120°子午圈MLT典型温度结构:中间层顶统计分析[J]. 地球物理学报,2008,54(4):982-990.]
[27] Salby M. Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing[J].Journal of Atmospheric Sciences, 1982, 39:2 577-2 600.

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[6] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[7] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[8] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[9] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[10] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[11] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[12] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[13] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[14] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[15] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
阅读次数
全文


摘要