Please wait a minute...
img img
高级检索
地球科学进展  2009, Vol. 24 Issue (3): 320-330    DOI: 10.11867/j.issn.1001-8166.2009.03.0320
“平流层过程及其对东亚天气气候的作用”专辑     
利用卫星数据考察平流层传播性行星波活动特征
陈泽宇,吕达仁
中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029
Characteristics of the Stratospheric Travelling Planetary Waves Revealed by Using Satellite Data
Chen Zeyu, Lv Daren
Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF(2481 KB)  
摘要:

       中层大气是大气波动盛行的区域。这些波动不仅是这里大气扰动的主要形态,伴随其传播的耗散成为作用在背景流场上的动力强迫和作用于环境物质上的湍流混合,影响到了中层大气的各个方面,尤其对一些典型环流结构的形成起着控制作用。简要地回顾了这个研究领域发展的历史。与此同时,利用美国卫星温度探测数据(SABER/TIMED温度数据)考察了平流层(20~70 km高度范围)传播性行星波活动的整体性质,给出了他们的空间分布和年变化形式。利用温度标准差(T-SDEV)代表行星波活动的强度,当前研究显示无论在热带外地区或以赤道为中心的热带地区,全年传播性行星波活动都是相当显著的。结合同期定常行星波活动强度分析结果,通过比较说明在热带外地区,传播性波动和定常波动表现出相近的季节活动性;从T-SDEV数值看,在定常波活动达到最强的季节(冬末春初),这两类波动活动的强度达到了相当的程度(TSDEV=12~14 K)。当前结果还显示,在定常波活动受到显著抑制的夏季条件下,传播性波动成为平流层行星波活动的主导成分。在赤道地区的分析结果表明传播性波动是这里的控制性波动,并且其活动强度在全年都处在相当稳定的状态;T-SDEV分析结果还给出了一个值得关注的现象,从平流层下部开始(20 km高度)逐渐随高度增大(大于2 K),但是这种随高度增长的趋势在30 km高度左右突然终止;从30 km开始直到中间层底部,T-SDEV几乎不随高度变化,这隐含地说明这里的波动处于一种饱和的状态。

关键词: 行星波传播饱和温度平流层SABER/TIMED卫星数据    
Abstract:

        The middle atmosphere is characterized by the prevalence of atmospheric waves. The waves predominate the major variability in the area. The waves also play the role of controlling the various key aspects of the middle atmosphere through wave damping in the propagation of waves, e.g., exerting mechanical drag on mean flow and causing turbulent diffusion on constituent, in particular in shaping the structures of the general circulations. A brief retrospect in the development in these researches is provided at first. Meanwhile, the temperatures collected by a satellite mission (SABER/TIMED) are used to investigate the property of travelling planetary waves (PWs) in the stratospheric portion (20~70 km). In terms of the standard deviation of temperature, the variability of the wave family is observed, and the annual variation and latitude-height distribution of the variability are presented. The travelling waves are found to be prominent both in the low latitudes as well as in the extra-tropical area. As to extra-tropical area, by comparing to the concurrent variability of stationary PWs retrieved by using the same dataset, both the travelling and the stationary waves exhibit clear annual cycle attaining maximal variability in the late-winter and early-spring (LWES), with T-SDEV of 12~14 K. Moreover, during the summer time when the stationary PWs are strongly depressed, travelling PWs are instead to be the predominant perturbations of planetary scale. Estimation results in terms of T-SDEV show that during the yearly course, the travelling PWs are steadily the predominant waves. Among all the features of the waves, the vertical variation of T-SDEV suggests that the waves are subject to be saturated. For example, the T-SDEV increases with height from 20 km to 30 km, but from 30 km to the bottom of the mesosphere, the feature is replaced by a phenomenon that the T-SDEV exhibits independence of height. 

Key words: Planetary wave    Travelling    Saturation    Temperature    Stratosphere    SABER/TIMED    Satellite data.
收稿日期: 2009-01-19 出版日期: 2009-03-10
:  P412.27  
基金资助:

中国科学院知识创新工程重要方向项目“全大气层(对流层—平流层—中间层—电离层/热层)动力耦合研究”(编号:KZCX2-YW-123);国家自然科学基金面上项目“台风诱发大气重力波的机制研究”(编号:40875017);国家自然科学基金重点项目“平流层—对流层多尺度耦合及其与天气气候关系研究”(编号:40333034)资助.

通讯作者: 陈泽宇     E-mail: z.chen@mail.iap.ac.cn
作者简介: 陈泽宇(1964-),男,陕西渭南人,副研究员,主要从事中高层大气物理学研究. E-mail:z.chen@mail.iap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈泽宇
吕达仁

引用本文:

陈泽宇,吕达仁. 利用卫星数据考察平流层传播性行星波活动特征[J]. 地球科学进展, 2009, 24(3): 320-330.

Chen Zeyu, Lv Daren. Characteristics of the Stratospheric Travelling Planetary Waves Revealed by Using Satellite Data. Advances in Earth Science, 2009, 24(3): 320-330.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2009.03.0320        http://www.adearth.ac.cn/CN/Y2009/V24/I3/320

[1] Pendlebury D, Shepherd T G, Pritchard M, et al. Normal mode Rossby waves and their effects on chemical composition in the last summer stratosphere[J].Atmospheric Chemistry and Physics,2008, 8:1 925-1 935.
[2] Garcia R R, Randel W J. Acceleration of the brewer-dobson circulation due to increases in greenhouse gases[J].Journal of Atmospheric Sciences, 2008,65(8):2 731-2 739.
[3] Lü Daren, Chen Zeyu, Bian Jianchun, et al. Advances in the research of the characteristics of the multi-scale processes of the interaction in between the atmospheric layers and its relations with weather and climate[J].Chinese Journal of Atmospheric Sciences,2008, 32(4): 782-793.[吕达仁,陈泽宇,卞建春,等. 平流层—对流层相互作用的多尺度过程特征及其与天气气候关系—研究进展[J]. 大气科学,2008,32(4): 782-793.]
[4] Chen Zeyu, Chen Hongbin, Chen Wen, et al. Advances in the researches in middle and upper atmosphere in 2006-2008[J].Chinese Journal of Space Sciences, 2008, 28(5): 60-71.
[5] Lü Daren, Chen Hongbin. Advances in middle atmosphere physics research[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4):750-769.
[6] Holton J R. Role of gravity-wave-induced drag and diffusion in the momentum budget of the mesosphere[J].Journal of Atmos pheric Sciences,1982, 39(4): 791-799.
[7] Holton J R. Influence of gravity wave breaking on the general circulation of the middle atmosphere[J].Journal of Atmospheric Sciences,1983, 40(10): 2 497-2 507.
[8] Garcia R R. Parameterization of planetary wave breaking in the middle atmosphere[J].Journal of Atmospheric Sciences,1991, 48:1 405-1 419.
[9] Garcia R R, Stordal F, Solomon S, et al. A new numerical model of the middle atmosphere I. Dynamics and transport of tropospheric source gases[J].Journal of Geophysical Research, 1992, 97: 12 967-12 991.
[10] Baldwin M P,Gray L J, Dunkerton T J, et al. The quasi-biennial oscillation[J].Reviews of Geophysics, 2001, 39: 179-229.
[11] Charney J G, Drazin P G. Propagation of planetary-scale disturbances from the lower into the upper atmospheric[J].Journal of  Geophysical Research, 1961, 66(1): 83-109.
[12] Dickinson R E. On the exact and approximate linear theory of vertically propagating planetary waves forced at a spherical lower boundary[J].Monthly Weather Review,1968, 96: 405-415.
[13] Dickinson R E. Theory of planetary wave  zonal flow interaction[J].Journal of Atmospheric Sciences, 1969, 26:73-81.
[14] Matsuno T. Vertical propagation of stationary planetary waves in the winter northern hemisphere[J].Journal of Atmospheric Sciences, 1970, 27: 871-883.
[15] Dickinson R E. On the excitation and propagation of zonal winds in an atmosphere with newtonian cooling[J].Journal of Atmospheric Sciences,1968, 25:269-279.
[16] Haynes P H, McIntyre M E. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and friction or other forces[J].Journal of Atmospheric Sciences,1987, 44: 828-841.
[17] Haynes P H, Marks C J, McIntyre M E, et al. On the “downward control”of extatropical diabatic circulation by eddy-induced mean zonal forces[J].Journal of Atmospheric Sciences, 1991, 48:651-678.
[18] Garcia R R, Boville B. “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere[J].Journal of Atmospheric Sciences,1994, 51: 2 238-2 245.
[19] Holton J R, Haynes P H, McIntyre M E, et al. Stratospheretroposphere exchange[J]. Reviews of Geophysics,1995, 33:403-439.
[20] Baldwin M P, Dameris M, Shepherd T G. How will the stratosphere affect climate change?[J].Science,2007, 316:1 576.
[21] Li Q, Graf H G, Giorgetta M A. Stationary planetary wave propagation in Northern Hemisphere winterclimatological analysis of the refractive index[J].Atmospheric Chemistry and Physics, 2007, 7:183-200.
[22] Mclandress C, Ward W, Formichev V, et al. Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended canadian middle atmosphere model[J].Journal of Geophysical Research, 2006, 111, D17111, doi:10.1029/2005JD006776.
[23] Russell J, Mlynczak M, Gordley L, et al. An overview of the saber experiment and preliminary calibration results[C]//Allen M Larar, ed. Proceeding of SPIE. Denver: SPIE, 1999,3 756: 277-288.
[24] Remsberg E E, Marshall B T, Garcia-Comas M, et al. Assessment of the quality of the version 1.07 temperature versus pressure profiles of the middle atmosphere from TIMED/SABER[J].Journal of Geophysical Research,2008, 113, D17701,doi:10,1029/2008JD010013.
[25] Chen Zeyu, Lü Daren. Seasonal variations of the MLT tides in 120°E Meridian[J].Chinese Journal of Geophysical, 2007,50(3):691-700.[ 陈泽宇,吕达仁.东经120度中间层和低热层大气潮汐及其季节变化特征[J]. 地球物理学报,2007,50(3):691-700.]
[26] Chen Zeyu, Lü Daren. Satellite remote sensing of the characteristics of the MLT mean temperatures in the 120°E meridian: The mesopause[J].Chinese Journal of Geophysical,2008, 51(4):982-990.[陈泽宇,吕达仁.卫星遥感东经120°子午圈MLT典型温度结构:中间层顶统计分析[J]. 地球物理学报,2008,54(4):982-990.]
[27] Salby M. Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing[J].Journal of Atmospheric Sciences, 1982, 39:2 577-2 600.

[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[3] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[4] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[5] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[6] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[7] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[8] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[9] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[10] 刘玮, 田文寿, 舒建川, 张健恺, 胡定珠. 热带平流层准两年振荡对热带对流层顶和深对流活动的影响[J]. 地球科学进展, 2015, 30(6): 724-736.
[11] 汤连生, 桑海涛, 罗珍贵, 孙银磊. 土体抗拉张力学特性研究进展[J]. 地球科学进展, 2015, 30(3): 297-309.
[12] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[13] 苗春生, 程远, 王坚红, 王兴. 中国风云卫星与海洋卫星近海SST资料融合技术及应用研究[J]. 地球科学进展, 2015, 30(10): 1127-1143.
[14] 刘鹏, 江志红, 于华英, 秦怡. 全球海表温度在不同时间尺度的主模态对比分析[J]. 地球科学进展, 2014, 29(7): 844-853.
[15] 权凌, 周纪, 李明松, 代冯楠, 李国全. 基于时间序列建模的城市热岛时间尺度成分分离方法与应用[J]. 地球科学进展, 2014, 29(6): 723-733.