地球科学进展 ›› 2019, Vol. 34 ›› Issue (8): 781 -786. doi: 10.11867/j.issn.1001-8166.2019.08.0781

国家重点研发计划进展    下一篇

格陵兰冰盖监测、模拟及气候影响研究
效存德 1, 2( ),陈卓奇 3,江利明 4, 5,丁明虎 6,窦挺峰 5   
  1. 1. 北京师范大学地表过程与资源生态国家重点实验室,北京 100875
    2. 中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730000
    3. 北京师范大学全球变化与地球系统科学研究院,北京 100875
    4. 中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北 武汉 430077
    5. 中国科学院大学,北京 100049
    6. 中国气象科学研究院青藏高原 与极地气象科学研究所,北京 100081
  • 收稿日期:2019-06-24 修回日期:2019-07-25 出版日期:2019-08-10
  • 基金资助:
    国家重点研发计划项目“格陵兰冰盖监测;模拟及气候影响研究”(2018YFC1406100)

A Study of Monitoring, Simulation and Climate Impact of Greenland Ice Sheet

Cunde Xiao 1, 2( ),Zhuoqi Chen 3,Liming Jiang 4, 5,Minghu Ding 6,Tingfeng Dou 5   

  1. 1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    2. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    3. Global Change and Earth System Science Research Institute, Beijing Normal University, Beijing 100875, China
    4. State Key Laboratory of Geodesy and Earth’s Dynamics Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
    5. University of Chinese Academy of Sciences, Beijing 100049, China
    6. Institute of Tibetan Plateau and Polar Meteorology, Chinese Academy of Meteorological Science, Beijing 100081, China
  • Received:2019-06-24 Revised:2019-07-25 Online:2019-08-10 Published:2019-10-11
  • About author:Xiao Cunde (1969-), male, Dingxi City, Gansu Province, Professor. Research areas include cryosphere and climate change. E-mail: cdxiao@bnu.edu.cn
  • Supported by:
    the National Key Research and Development Program of China "A study of monitoring;simulation and climate impact of Greenland Ice Sheet"(2018YFC1406100)

格陵兰冰盖是地球上两大仅存冰盖之一。随着气候变暖的加剧,格陵兰冰盖的消融及其对海平面上升的贡献成为国际上研究的热点问题。格陵兰冰盖全部融化将会导致全球海平面上升约7.3 m。然而,影响冰盖物质平衡变化的动力机制目前尚不清楚,是预测未来海平面上升最大的不确定性来源。针对格陵兰“冰盖—溢出冰川—海冰”系统的非稳定性关键过程开展监测与模拟研究,建立格陵兰“冰盖—溢出冰川—海冰”冰流系统的星—机—地一体化综合观测体系,支撑冰盖及其周边海冰数值模拟和影响研究,为在格陵兰地区开展长期监测和国际合作奠定基础;通过改进冰盖动力学模型,辅以冰芯古气候参数约束,降低预估海平面变化的不确定性;揭示冰盖周边海冰变化的驱动机制,侧重“西北航道”格陵兰西侧航段,对通航窗口期进行评估和预测,为加深对北极冰冻圈变化及影响的认识,服务“冰上丝绸之路”尤其是西北航道的安全航行与运营,以及为我国海岸带综合风险防范提供科学支撑。

Greenland Ice Sheet is one of the two largest ice sheets on the planet. Under the background of climate warming, the melting of the Greenland ice sheet and its contribution to sea level rise has become an international hot issue. The whole melting of the Greenland ice sheet can cause the global sea level to rise by about 7.3 meters. However, the dynamic mechanism that affects the mass balance of ice sheet is still unclear and is the greatest uncertainty source for predicting the rise in sea level in the future. The National Key Research and Development Program of China “A Study of the Monitoring, Simulation and Climate Impact of Greenland Ice Sheet” conducts monitoring and simulation studies on the key processes of instability of the “ice sheet-outlet glacier-sea ice” system, and establishes a satellite-airborne-ground integrated observation system, supporting the numerical simulation and impact research of the ice sheet and its surrounding sea ice, laying the foundation for long-term monitoring and international cooperation in Greenland. This program will work to reduce the uncertainty of sea level change projections by improving the ice sheet dynamic model forced by the ice core records, reveal the driving mechanism of sea ice changes around the ice sheet, focusing on the Northwest Passage, evaluate and forecast the navigation window period. The results of the project will deepen the understanding of the changes and impacts of the Arctic cryosphere, serve the safe navigation and operation of the Northwest Passage, and provide scientific support for the comprehensive risk prevention of coastal zones in China.

中图分类号: 

图1 格陵兰冰盖观测、模拟和影响研究框架
Fig. 1 Content framework of the study of monitoringsimulation and climate impact of Greenland Ice Sheet
1 Graversen R G , Drijfhout S , Hazeleger W , et al . Greenland’s contribution to global sea-level rise by the end of the 21st century [J]. Climate Dynamics, 2011, 37(7/8): 1 427-1 442.
2 Rignot E , Velicogna I , van den Broeke M R , et al . Acceleration of the contribution of the Greenland and Antarctic Ice Sheets to sea level rise[J].Geophysical Research Letters, 2011, 38(5). DOI:10.1029/2011GL046583 .
doi: 10.1029/2011GL046583    
3 Dahl-Jensen D , Albert M R , Aldahan A , et al . Eemian interglacial reconstructed from a Greenland folded ice core [J]. Nature, 2013, 493 (7 433): 489-494.
4 Meier W N , Hovelsrud G K , Van Oort B E H , et al . Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity[J]. Reviews of Geophysics, 2014, 52(3): 185-217.
5 Stroeve J C , Mioduszewski J R , Rennermalm A , et al . Investigating the local-scale influence of sea ice on Greenland surface melt [J]. The Cryosphere, 2017, 11: 2 363-2 381.
6 IPCC, AR 5. Climate change 2013: The physical science basis
[M] //Stocker T F , Qin D , Plattner G K , al et , eds . Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
7 Nghiem S V , Hall D K , Mote T L , et al . The extreme melt across the Greenland Ice Sheet in 2012[J]. Geophysical Research Letters, 2012, 39(20). DOI:10.1029/2012GL053611 .
doi: 10.1029/2012GL053611    
8 Rignot E , Jacobs S , Mouginot J , et al . Ice shelf melting around Antarctica [J]. Science, 2013, 341 (6 143):266-270.
9 Smith L C , Yang K , Pitcher L H , et al . Direct measurements of meltwater runoff on the Greenland ice sheet surface [J]. Proceedings of the National Academy of Sciences, 2017, 114:E10622-E10631.
10 Nienow P W , Sole A J , Slater D A , et al . Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet System [J]. Current Climate Change Reports, 2017, 3(4):330-344.
11 Flowers G E . Hydrology and the future of the Greenland Ice Sheet [J]. Nature Communications, 2018, 9:2 729.
12 Seddik H , Greve R , Zwinger T , et al . Simulations of the Greenland Ice Sheet 100 years into the future with the full Stokes model Elmer/ Ice [J]. Journal of Glaciology, 2012, 58(209):427-440.
13 Benn D I , Warren C R , Mottram R H . Calving processes and the dynamics of calving glaciers [J]. Earth-Science Reviews, 2007, 82(3/4):143-179.
14 Bassis J N , Walker C C . Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering, 2012, 468:913-931.
15 Zhang T , Price S , Ju L , et al . A comparison of two stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d) [J]. The Cryosphere, 2017, 11: 179-190.
[1] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[2] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[3] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[4] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[5] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[6] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[7] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[8] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[9] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[10] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[11] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[12] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[13] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[14] 赵进平,史久新,金明明,李超伦,矫玉田,卢勇. 楚科奇海融冰过程中的海水结构研究[J]. 地球科学进展, 2010, 25(2): 154-162.
[15] 杨清华,张占海,刘骥平,吴辉碇,张林. 海冰反照率参数化方案的研究回顾[J]. 地球科学进展, 2010, 25(1): 14-21.
阅读次数
全文


摘要