地球科学进展 ›› 2008, Vol. 23 ›› Issue (4): 350 -356. doi: 10.11867/j.issn.1001-8166.2008.04.0350

综述与评述 上一篇    下一篇

锑的环境生物地球化学循环与效应研究展望
吴丰昌 1,郑建 2,潘响亮 1,黎 文 1,邓秋静 1, 3,莫昌琍 1, 3,朱 静 1, 3,刘碧君 1, 3,劭树勋 1,郭建阳 1   
  1. 1.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002;2.日本国立放射医学综合研究所,那珂凑;3.中国科学院研究生院,北京 100049
  • 收稿日期:2007-07-04 修回日期:2008-02-21 出版日期:2008-04-10
  • 通讯作者: 吴丰昌 E-mail:wufengchang@vip.skleg.cn
  • 基金资助:

    国家自然科学基金重点项目“锑的环境生物地球化学循环与效应”(编号:40632011);中国科学院知识创新工程重要方向项目“西南喀斯特地区天然有机质的环境生物地球化学过程与效应”(编号:KZCX2-YW-102);国家自然科学基金杰出青年基金项目“环境地球化学与生物地球化学”(编号:40525011)联合资助.

Prospect on Biogeochemical Cycle and Environmental Effect of Antimony

Wu Fengchang 1,Zheng Jian 2,Pan Xiangliang 1,Li Wen 1,Deng Qiujing 1,3,Mo Changli 1,3,Zhu Jing 1,3,Liu Bijun 1,3,Shao Shuxun 1,Guo Jianyang 1   

  1. 1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. National Institute of Radiological Sciences, 3609 Isozaki-cho, Hitachinaka, Ibaraki 3111-202, Japan; 3.Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2007-07-04 Revised:2008-02-21 Online:2008-04-10 Published:2008-04-10

研究表明锑与铅和汞一样,是一个可长距离输送的全球性有毒元素;但锑的研究最近才引起国际社会的关注。与其它金属如汞、铅、镉和砷等相比,国际上锑的研究开展得相对较少。为了揭示锑的全球性污染程度、循环过程及其对生态环境的影响,急需开展深入研究。概述了前人在锑的环境生物地球化学循环和效应方面的研究成果,分析了存在的科学问题,凝练了进一步研究的方向、思路和方法,并指出我国西南地区是开展这一方向研究的理想区域,及在该地区开展深入研究的重要性。

Studies show antimony as lead and mercury is a global toxic element that can be transported far away, but it only recently arouses attentions. Compared with other metals such as mercury, lead, cadmium and arsenic, much less has been done on antimony. Systematic studies are urgently needed to disclose the global pollution level, cycling processes and ecological environment effects of antimony. Knowledge about biogeochemical cycle and environmental effect of antimony are summarized, and the scientific problems are analyzed. The direction and method for future antimony study are also suggested. The district in the Southwest of China is a good place to study the biogeochemical cycle and environmental effect of antimony, and this study will be of great importance.

中图分类号: 

[1] Council of European Union. Council Directive 98/83/EC of 3 NovemberQuality of Water Intended for Human consumption [J/OL]. Official Journal Letters1989330:32-54.

[2] US EPA. Water related fate of the 129 Priority Pollutants [EB/OL]. Washington DC19791EP-440/4-79-029A.

[3] Furuta NIijima AKambe Aet al. Concentrationsenrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004 [J]. Journal of Environmental Monitoring20057:1 155-1 161.

[4] He MengchangWan Hongyan. Distributionspeciationtoxicity and bioavailability of antimony in the environment [J]. Progress in Chemistry2004161: 131-135.[何孟常,万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展,2004161):131-135.]

[5] Shotyk WKrachler MChen B. Antimony: Global environmental contaminant [J]. Journal of Environmental Monitoring20057: 1 135-1 136. 

[6] Cloy J MFarmer J GGraham M Cet al. A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bogScotland [J]. Journal of Environmental Monitoring20057: 1 137-1 147.

[7] Krachler MZheng JKoerner Ret al. Increasing atmospheric antimony contamination in the northern hemisphere: Snow and ice evidence from Devon IslandArctic Canada [J]. Journal of Environmental Monitoring200577: 1 169-1 176.

[8] Shotyk WChen BKrachler M. Lithogenicoceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bogMyrarnarFaroe Islands [J]. Journal of Environmental Monitoring 20057: 1 148-1 154.

[9] Gebel TChristensen SDunkelberg H. Comparative and environmental genotoxicity of antimony and arsenic [J]. Anticancer Research199717: 2 603-2 608.

[10] McCallum R I. Occupational exposure to antimony compounds [J]. Journal of Environmental Monitoring20057:1 245-1 250.

[11] Ren ZhaohuiQing ZixuanChen Zhiyu. Analysis of present antimony market and development trend [J]. World Nonferrous Metals2002,(7: 23-25.[任朝晖,卿仔轩,陈志宇. 锑市场现状及发展趋势分析[J]. 世界有色金属,2002,(7):23-25.]

[12] Gebel T. Arsenic and antimony: Comparative approach on mechanistic toxicology [J]. Chemico-Biological Interactions19971073: 131-144.

[13] Shotyk WCheburkin A KAppleby P Get al. Two thousand years of atmospheric arsenic antimonyand lead deposition recorded in an ombrotrophic peat bog profileJura Mountains Switzerland [J]. Earth and Planetary Science Letters19961451/4: E1-E7.

[14] Filella MBelzile NChen Y W. Antimony in the environment: A review focused on natural waters I. Occurrence [J]. Earth-Science Review200257: 125-176.

[15] Wu JiadaXiao QimingZhao Shougeng. China Antimony Mineral Deposit [C]Song Shuhe et aleds. China Mineral Depositfirst volume. Beijing: Geology Press1994: 338-412.[乌家达,肖启明,赵守耿. 中国锑矿床[C]宋叔和等主编. 中国矿床(上册). 北京:地质出版社,1994:338-412.]

[16] Gurnai NSharma ATalukder G. Effects of antimony on cellular systems in animals-a review [J]. Nucleus199437: 71-96.

[17] Filella MBelzile NChen Y W. Antimony in the environment: A review focused on natural waters II. Relevant solution chemistry [J]. Earth-Science Review200259: 265-285.

[18] Takyanagi KCossa D. Vertical distribution of SbIII and SbV in Pavin lakeFrance [J]. Water Research199731:671-674.

[19] Zheng JIijima AFuruta N. Complexation effect of antimony compounds with citric acid and its application to the speciation of antimonyIII and antimonyV using HPLC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry200116: 812-818.

[20] Vinas PLopez-Garcia IMerino-Merono Bet al. Liquid chromatography-hydride generation-atomic fluorescence spectrometry hybridation for antimony speciation in environmental samples [J]. Talanta200668:1 401-1 405.

[21] Krachler MEmons HZheng J. Speciation of antimony for the 21st century: Promises and pitfalls [J]. Trends in Analytical Chemistry2001202: 79-90.

[22] Ford T EMitchel R. Microbial transport of toxic metals [C]Mitchel Red. Environmental Microbial. New York: John Wiley-Liss1992:83-101.

[23] White CSayer J AGadd G M. Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination [J]. FEMS Microbiology Review199720: 503-516.

[24] Zhu X KGuo YO'Nions R Ket al. Isotopic homogeneity of iron in the early solar nebula [J]. Nature2001412:311-313.

[25] Rouxel OLudden JFouquet Y. Antimony isotope variations in natural systems and implications for their use as geochemical tracers [J]. Chemical Geology2003200:25-40.

[26] Johnson C MBeard B JAlbarede F. Geochemistry of non-traditional stable isotopes [J]. Review in Mineralogy and Geochemistry200455: 1-450.

[27] Arnold G LAnbar A DBarling Jet al. Molybdenum isotope evidence of widespread anoxia in mid-proterozoic oceans [J]. Science2004295:2 060-2 062.

[28] Bentley RChasteen T G. Microbial methylation of metalloids: Arsenicantimonyand bismuth [J]. Microbiology and Molecular Biology Reviews2002662: 250-271.

[29] Filella MBelzile NLett M C. Antimony in the environment: A review focused on natural waters III. Microbiota relevant interactions [J]. Earth-Science Reviews2007803/4: 195-217.

[30] Breault RColman JAkien Get al. Copper speciation and binding by organic matter in copper contaminated streamwater [J]. Environmental Science Technology199630: 3 477-3 486.

[31] Wu F CTanoue E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters [J]. Environmental Science & Technology2001353 646-3 652.

[32] Wu F CMills BEvans R Det al. Molecular size distribution characteristics of the metal-DOM complexes in stream waters by high-performance size-exclusion chromatography and high-resolution inductively coupled plasma mass spectrometry [J]. Journal of Analytical and Atomic Spectrometry200419: 979-983.

[33] Wu F CCai Y REvans R Det al. Complexation between HgII and dissolved organic matter in stream waters: An application of fluorescence spectroscopy [J]. Biogeochemistry200471: 339-351.

[34] Deng TChen Y WBelzile N. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent [J]. Analytica Chimica Acta2001432: 293-302.

[35] Tang XiangyuLü BoshengWu Wenhua. Metal-microbe Interactions in Aquatic Ecosystems [J]. Research of Environmemal Sciences199912: 28-32. [唐翔宇,吕伯升,吴文华. 水生生态系统中的微生物金属相互作用[J]. 环境科学研究,19991228-32.]

[36] Wu ShengchunLuo YongmingJiang Xianjunet al. Study on Phytoremediation of heavy metal polluted soils [J]. Soils20002: 75-81.[吴胜春,骆永明,蒋先军,等. 重金属污染土壤的植物修复研究[J]. 土壤,2000275-81.]

[37] Liang XiaobingWan GuojiangHuang Ronggui. Expectation and application of PCR-RFLP in environmental geochemistry [J]. Geology Geochemistry200129:94-98. [梁小兵,万国江,黄荣贵. PCR-RFLP技术在环境地球化学研究中的应用及展望[J]. 地质地球化学,200129: 94-98.]

[38] Wang FushunLiu CongqiangLiang Xiaobinget al. Remobilization of trace metals induced by microbiological activities near sediment-water InterfaceAha LakeGuiyang [J]. Chinese Science Bulletin200348: 2 073-2 080.[汪福顺,刘丛强,梁小兵,等. 贵州阿哈湖沉积物水界面微生物活动及其对微量元素再迁移富集的影响[J]. 科学通报,2003482 073-2 080.]

[39] Kirk M FHolm T RPark J Het al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater [J]. Geology20043211: 953-956.

[40] Fu P QWu F CLiu C Qet al. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake ErhaiSouthwest China [J]. Biogeochemistry200681 2: 179-189.

[41] Tabak H HScharp RBurckle Jet al. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle [J]. Biodegradation2003146: 423-436.

[42] Lyalikova M N. Antimony-oxidizing bacteria and their geochemical activity [C]Krumbein W Eed. Environmental Biogeochemistry and Geomicrobiology. Ann Arbor: Ann Arbor Science1987:929-936.

[43] Perez-Corona TMadrid YCamara C. Evaluation of selective uptake of selenium and antimony species by baker's yeast cells [J]. Analytica Chimica Acta1997345: 249-255.

[44] He MengchangJi HaibingZhao Chengyiet al. Preliminary study of heavy metal pollution in soil and plant near antimony mine area [J]. Journal of Beijing Normal UniversityNatural Science),2002383:417-420.[何孟常,季海兵,赵承易,等. 锑矿区土壤和植物中重金属污染初探[J]. 北京师范大学学报:自然科学学报,2002383):417-420.]

[45] He M CYang J R. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue [J]. The Science of the Total Environment1999243: 149-155.

[46] Baroni FBoscagli AProtano Get al. Antimony accumulation in Achillea ageratumPlantago lanceolata and Silene vulgaris growing in an old Sb-mining area [J]. Environmental Pollution2000109: 347-352.

[47] Fan D LZhang TYe J. The Xikuangshan Sb deposit hosted by the Upper Devonian black shale seriesHunanChina [J]. Ore Geology Review200024:121-133.

[48] Yang RuiyanMa DongshengPan Jiayong. Geothermal field of ore-forming fluids of antimony deposits in Xikuangshan [J]. Geochimica2003326: 509-519.[杨瑞琰,马东升,潘家永. 锡矿山锑矿床成矿流体的热场研究[J]. 地球化学,2003326):509-519.]

[49] Tu GuangzhiGao ZhenminCheng Jingpinget al. Low Temperature Geochemistry [M]. Beijing: Science Press1998. [涂光炽,高振敏,程景平,等. 低温地球化学[M]. 北京:科学出版社,1998.]

[50] Tu GuangzhiGao ZhenminHu Ruizhonget al. Dispersed Element Geochemistry and mineralization mechanism [M]. Beijing: Geology Press2003.[涂光炽,高振敏,胡瑞忠,等. 分散元素地球化学及成矿机制[M]. 北京:地质出版社,2003.]

[51] Qi WenqiCao Jieshan. Research on the soil environment background value of antimony [J]. Chinese Journal of Soil Science199122: 209-211.[齐文启,曹杰山. 锑(Sb)的土壤环境背景值研究[J]. 土壤通报,199122209-211.]

[52] Gomez D RGine M FBellato A C Set al. Antimony: A traffic-related element in the atmosphere of Buenos AiresArgentina [J]. Journal of Environmental Monitoring20057: 1 162-1 168.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 蒋俊霞,杨丽薇,李振朝,高晓清. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
[4] 龙花楼, 曲艺, 屠爽爽, 李裕瑞, 戈大专, 张英男, 马历, 王文杰, 王婧. 城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018, 33(5): 455-463.
[5] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[6] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[7] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[8] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[9] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[10] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[11] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[12] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[13] 杨志峰,崔保山,黄国和,白军红,孙涛,李晓文,刘新会. 黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J]. 地球科学进展, 2006, 21(11): 1119-1126.
[14] 侯立军;刘敏;许世远;欧冬妮;刘巧梅;刘华林;蒋海燕. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
[15] 汪明启;任萍;严光生. 美国矿床环境研究动态及建议[J]. 地球科学进展, 2004, 19(4): 636-641.
阅读次数
全文


摘要