地球科学进展 ›› 2002, Vol. 17 ›› Issue (2): 278 -282. doi: 10.11867/j.issn.1001-8166.2002.02.0278

中国典型地区土地利用变化对生态系统的影响机制 上一篇    下一篇

切沟中土壤水分的空间变化特征
谢云 1,刘宝元 1,伍永秋 2   
  1. 1. 北京师范大学资源与环境科学系,北京100875;2. 北京师范大学资源科学研究所,北京师范大学环境演变与自然灾害教育部重点实验室,北京100875
  • 收稿日期:2001-12-07 修回日期:2001-12-28 出版日期:2002-12-20
  • 通讯作者: 谢云(1964-),女,辽宁大连人,副教授,主要从事气候与土壤侵蚀研究.E-mail:xieyun@bnu.edu.cn E-mail:xieyun@bnu.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“草地与农牧交错带生态系统重建机理及优化生态—生产范式”(编号:G2000018602);国家自然科学基金项目“中国降雨侵蚀力的研究与应用”( 编号:40171059)资助.

SPATIAL DISTRIBUTION OF SOIL MOISTURES IN A GULLY WATERSHED

XIE Yun 1, LIU Bao-yuan 1, WU Yong-qiu 2   

  1. 1. Department of Resources and Environment Sciences, Beijing Normal University, Beijing 100875,China;2. Institute of Resources Science, Beijing Normal University, Beijing 100875,China; 3. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China, Beijing 100875,China
  • Received:2001-12-07 Revised:2001-12-28 Online:2002-12-20 Published:2002-04-01

切沟侵蚀不仅破坏土地资源,而且影响下游地区环境。目前的土壤侵蚀预报模型没有包括切沟侵蚀,因此研究切沟中土壤水分空间变化是建立切沟侵蚀模型的基础,也是恢复植被的基础。在陕西省安塞大南沟流域选择一个切沟,从1998-2000年连续 3年在 4~10月间对切沟不同部位土壤水分状况进行了观测。分析结果表明,切沟中浅层土壤水分空间分异规律明显,沟顶土壤水分状况较好,土壤容积湿度达到10.3%。沟坡则较差,但沿沟坡向下到沟底,土壤水分不断增加,分别为 6.3%、6.4%和10.4%。沟坡陡崖的土壤水分条件最差,接近凋萎湿度,容积含水量仅为4.6%~5.9%。沟底土壤湿度有所好转,为 7.7%。从雨季开始到结束,整体上土壤水分呈下降趋势,但随降雨事件发生波动。季节变化比较明显的是土壤水分条件好的部位,如沟顶、沟坡底部和沟底。尤以沟底变化最大。沟坡陡崖土壤湿度随季节没有任何变化。从1998-2000年,随降水量减少,切沟所有部位土壤湿度持续下降,即使在水分条件较好的沟顶和沟坡下部,土壤湿度也仅为 8.1%~8.8%,其它部位则都接近于凋萎湿度。土壤水分亏缺相当严重。切沟不同部位土壤水分的季节和年际变化主要受降雨入渗补给影响,而沟底则与径流的产生有关。因此应进一步研究不同降雨类型与径流产生、以及土壤湿度变化的关系。

Gully erosion damages land resources and causes site-off environmental problems.  But little gully erosion model included in soil erosion models.  It is necessary to study soil moistures in a gully watershed for establishing a gully erosion model and restoring vegetation.  A gully watershed was selected in Ansai County, Shaanxi Province to study soil moisture spatial distribution and its seasonal and annual variations.  From 1998 to 2000, soil moistures were measured every April to October by using TDR systems installed in different gully positions.  The analyzed results showed that there were obvious different soil moistures in a gully watershed.  The higher water content was in the gully top which was 10.3% of volume.  Soil water was poorer in gully sides and increased from upper slope to lower slope, which were 6.3%, 6.4% and 10.4% respectively.  For gully cliff, soil moisture was close to wilting point, which was the driest soil in a gully watershed.  Gully floor had relative higher soil moisture of 7.7%.  During the rainfall season from April to October, soil moistures decreased in the whole gully system, but there were fluctuations corresponding to the occurrence of rainfall events.  The higher the soil moistures were, the higher the seasonal variations were.  Soil water content in the gully floor had the largest varied range of 10.3% during the rainfall season.  But soil moistures in gully cliff had no any change during the season, even during 3 years.  From 1998 to 2000, soil moistures of all the positions in the gully watershed reduced continually.  Gully top and lower slope only had 8.1%~8.8% of soil water and other locations were near to wilting point.  The spatial distributions and seasonal or annual variations of soil moistures in different potions of a gully watershed depends on rainfall supply largely.  For the gully floor, soil water content was influenced by the runoff generation besides rainfall supply.  It would be valuable to further study the relationship between rainfall types and runoff generation and soil moisture variations.
 

中图分类号: 

[1]Brooks K N,  Ffolliott P F, Gregersen H M, et al.Hydrology and the Management of Watersheds[M].  2nd ed. Iowa: Iowa State University Press, 1997. 
[2]Hudson N. Soil Conservation[M].  Iowa: Iowa State University Press, 1995. 285-293.
[3]Li Baoguo, Gong Yuanshi, Wang Qiang, et al. Dynamic Model of Cropland Soil Moisture and its Application [M].  Beijing: Science Press, 2000. 7-10.  [李保国, 龚元石, 左强, 等. 农田土壤水的动态模型及应用[M]. 北京:科学出版社, 2000. 7-10.]
[4]Department of Geography, Shaanxi Nromal University.  Geographical annals of Yan’an, Shaanxi Province [M].  Xi’an: People's Press of Shaanxi, 1982. 110-112.  [陕西师范大学地理系. 陕西省延安地区地理志[M]. 西安:陕西人民出版社,1982. 110-112.]
[5]Xiong Yi, Li Qingkui.  Chinese Soil [M].  Beijing: Science Press, 1990. 95-97.  [熊毅,李庆逵. 中国土壤[M]. 北京:科学出版社, 1990. 95-97.]
[6]Huang Mingbin, Kang Shaozhong, Li Yushan.  A Comparison of hydrological behaviors of forest and grassland watersheds in gully region of the Loess Plateau [J].  Journal of Natural Resources, 1999,14(3):226-231.  [黄明斌,康绍忠,李玉山. 黄土高原沟壑区森林和草地小流域水文行为的比较研究[J]. 自然资源学报,1999,14(3):226-231.]

[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[3] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[4] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[5] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[6] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[7] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[8] 李大治, 晋锐, 车涛, 高莹, 耶楠, 王树果. 联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究 *[J]. 地球科学进展, 2014, 29(2): 295-305.
[9] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[10] 刘希林,张大林,贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.
[11] 朱忠礼,林柳莺,徐同仁. 海河流域不同下垫面土壤水分动态模拟研究[J]. 地球科学进展, 2012, 27(7): 778-787.
[12] 张添,黄春林,沈焕锋. 土壤水分对土壤参数的敏感性及其参数优化方法研究[J]. 地球科学进展, 2012, 27(6): 678-685.
[13] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[14] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[15] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
阅读次数
全文


摘要