地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.005

   

冰碛坝铠甲层块石起动机理试验研究
刘洋,赵雪帆,常鸣,余斌   
  1. (成都理工大学 地质灾害防治与地质环境保护全国重点实验室,四川 成都 610059)
  • 基金资助:
    地质灾害防治与地质环境保护国家重点实验室自主研究课题(编号:SKLGP2023Z013);成都理工大学珠峰科学研究计划2.0.

Experimental Study on the Starting Mechanism of Boulders at the Moraine Dam Armored Layer

Liu Yang, Zhao Xuefan, Chang Ming, Yu Bin   

  1. (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)
  • About author:Liu Yang, research areas include the mechanism of glacial lake outburst and its prevention and control. E-mail: liuyang2012@cdut.edu.cn.
  • Supported by:
    Project supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No. SKLGP2023Z013); Chengdu University of Technology Mount Everest Scientific Research Program 2.0.
冰湖溃决会引发突发性洪水与泥石流,直接冲毁下游基础设施、威胁生命财产安全,并破坏生态环境,探明冰湖溃决机制对灾害预警及防治至关重要。冰碛坝作为溃决过程中的关键天然屏障,其表层“铠甲层”直接决定了冰碛坝的抗侵蚀能力与整体稳定性。为研究冰碛坝铠甲层表面大块石的起动机理,以西藏别隆措冰碛湖为原型,通过水槽试验探明块石起动的关键机制。基于大块石在涌浪下以滚动起动为主的观测事实,建立了考虑附加力与上覆推力的滚动起动流速公式。结果表明:块石在涌浪作用下的起动过程可分为单颗粒滑移或滚动、局部动态失稳及整体溃决式起动3 种模式,且起动行为与冰崩涌浪规模、块石粒径、容重、暴露度以及坝坡坡度等因素密切相关。铠甲层块石起动流速公式实用性好,解决了传统公式忽略颗粒形状差异、采用平槽泥沙推导并将块石简化为均质球体等与实际情况不符的问题。该计算模型能够较准确地预测起动流速,可用于分析冰碛坝铠甲层块石在涌浪等水流作用下的起动问题。未来研究应聚焦冰碛坝铠甲层的失稳机制,通过试验、野外观测与数值模拟揭示其在水力与冻融作用下的破坏阈值,建立耦合该过程的溃决动力学模型,发展基于结构状态的预警方法。
Abstract:Glacial lake outburst floods represent a classic chain-reaction disaster in high-mountain regions, frequently triggering sudden floods and debris flows that severely threaten downstream infrastructure and ecological security. Against the backdrop of global warming and ongoing glacial retreat, the frequency and scale of such disasters are increasing, yet the underlying mechanisms and dynamic processes remain incompletely understood. Deepening our understanding of glacial lake outburst flood mechanisms and evolutionary patterns not only enhances regional disaster warning and risk prevention capabilities but also provides crucial scientific insights into catastrophic processes within mountainous systems under climate change. As the key natural barrier during outbursts, the surface “armor layer” of morainic dams directly determines the dam's erosion resistance and overall stability. To investigate the initiation mechanism of large boulders on the armor layer of glacial moraines, the Bielong Co glacial lake in Xizang was used as a prototype. Water channel experiments were conducted to clarify the key mechanisms of boulder initiation. Based on observations showing that large boulders primarily initiate movement through rolling under surge waves, a rolling initiation velocity formula was established, accounting for additional forces and overburden thrust. Results indicate that the initiation process of boulders under surge waves can be categorized into three modes: single-particle sliding or rolling, localized dynamic instability, and overall catastrophic initiation. The initiation behavior is closely related to factors such as the scale of the ice avalanche surge wave, boulder grain size, bulk density, exposure degree, and dam slope gradient. The initiation velocity formula for armor layer boulders demonstrates high practicality, addressing shortcomings of traditional formulas that neglect particle shape variations, rely on flat-channel sediment dynamics derivations, and simplify boulders as homogeneous spheres, approaches inconsistent with reality. This computational model accurately predicts initiation velocities and can be applied to analyze the initiation of armor layer boulders in glacial till dams under surge wave and other flow conditions. Future research should focus on the microstructural characteristics and initiation mechanisms of the armor layer. By integrating field observations, experimental simulations, and numerical analysis, it is essential to systematically investigate its mechanical response and progressive failure process under sustained seepage, water level fluctuations, and freeze-thaw cycles, with particular emphasis on revealing the governing principles of armor layer shear strength and permeability stability controlled by particle gradation, cementation degree, and structural integrity, and elucidating the dynamic thresholds from localized erosion to overall failure. Building on these findings, we develop a coupled dynamic model that simulates the entire ice-lake outburst process, incorporating the initiation mechanism of the armor layer. This work advances a dynamic disaster risk assessment system based on real-time monitoring of dam structural conditions and multi-parameter early warning indicators. Consequently, it provides critical theoretical support and scientific tools for precise early warning and risk prevention of ice lake outbursts.

中图分类号: 

[1] 姚檀栋, 张太刚, 王伟财, 张国庆, 刘时银, 安宝晟. 亚洲水塔冰湖变化与冰湖溃决灾害风险及应对[J]. 地球科学进展, 2025, 40(3): 221-227.
[2] 孙信尧, 张科, 林琪, 沈吉. 定量转换函数在人类世湖泊水环境变化研究中的应用[J]. 地球科学进展, 2024, 39(5): 504-518.
[3] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[4] 李一民, 谭振宇, 杨辰, 何峰, 孟迪, 罗菊花, 段洪涛. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展, 2022, 37(11): 1141-1156.
[5] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[6] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[7] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[8] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[9] 韩伟孝,黄春林,王昀琛,顾娟. 基于长时序Landsat 5/8多波段遥感影像的青海湖面积变化研究[J]. 地球科学进展, 2019, 34(4): 346-355.
[10] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[11] 张虎才, 常凤琴, 段立曾, 李华勇, 张云鹰, 蒙红卫, 文新宇, 吴汉, 路志明, 毕荣鑫, 张扬, 赵帅营, 康文刚. 滇池水质特征及变化[J]. 地球科学进展, 2017, 32(6): 651-659.
[12] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[13] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[14] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[15] 杨永琼,陈敬安,王敬富,曾艳. 沉积物磷原位钝化技术研究进展[J]. 地球科学进展, 2013, 28(6): 674-684.
阅读次数
全文


摘要