地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.002

   

梅雨极端化的表征和预测
胡琳曼1,2,宋晓蕾1,2,尹志聪1,2*   
  1. (1. 南京信息工程大学 气候系统预测与变化应对全国重点实验室/气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心,江苏 南京 210044;2. 南京信息工程大学 大气科学学院,江苏 南京 210044)
  • 基金资助:
    国家自然科学基金项目(编号:U25A20785)资助.

Characterization and Prediction of the Deviation Degree of Misty Rain

Hu Linman1, 2, Song Xiaolei1, 2, Yin Zhicong1, 2*   

  1. (1. State Key Laboratory of Climate System Prediction and Risk Management/Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2.School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China)
  • About author:Hu Linman, research areas include prediction of Meiyu extreme events. E-mail:hulinman@niust.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. U25A20785).
近年来,梅雨期降水愈发偏离其绵绵细雨的传统特征,呈现出显著的暴雨、干热双极端化趋势。为了全面刻画梅雨变化特征,使用基于逐日站点观测数据研发的三维烟雨偏离度指数(D2MR)来表征梅雨的更多维度,并以其分指数确定逐年梅雨性质。同时,基于ERA5 再分析数据和Hadley Center 数据,确定了影响三维烟雨偏离度指数及其分指数的关键前期因子,并采用年际增量方法分别构建了预测模型。结果表明,预测模型对梅雨极端化指数及其分指数具有显著的预测效果,相关系数可达0.72 以上,且性能稳定。该模型可以成功捕捉到1963—2025 年三维烟雨偏离度指数的年际变化特征及其显著的上升趋势,准确预测出了近些年梅雨愈发极端的情况。同时也很好地捕捉到极端年份的梅雨性质,成功独立预测出了2020年和2024年的暴力梅以及2022年的高温干旱事件。随着梅雨极端事件频发,其对长江流域社会经济的影响不断加剧,针对梅雨极端化进行表征和预测研究,可为防灾减灾及农业规划提供科学支撑的同时对理解区域气候变化规律具有重要的现实意义。
Abstract:Under the background of global warming, Meiyu precipitation over the Yangtze River basin has increasingly deviated from its traditional characteristics of persistent light rainfall, exhibiting pronounced dual extremes of heavy rainfall and dry heat. Such complex changes are difficult to accurately characterize using a single variable. To comprehensively describe the evolving features of Meiyu, this study employs the Deviation Degree of Misty Rain (D2MR), a multidimensional index developed based on daily station observations, to characterize Meiyu variability from multiple perspectives, and its sub-indices are further used to identify the dominant Meiyu type in each year. Meanwhile, based on ERA5 reanalysis data and datasets from the Hadley Centre, physically meaningful potential predictors are systematically analyzed, and key preceding factors influencing D2MR and its sub-indices are identified. Prediction models are then constructed using the interannual increment approach. The results indicate that the proposed models exhibit significant and stable predictive performance for the Meiyu extremeness index and its sub-indices, with correlation coefficients exceeding 0.72. The models successfully capture the interannual variability and the significant upward trend of D2MR during 1963 – 2025, and effectively reproduce the characteristics of Meiyu in extreme years, accurately reflecting the increasing extremeness of Meiyu in recent decades. In particular, the models independently predict the occurrences of heavy-rainfall-dominated Meiyu in 2020 and 2024, dry-heat-dominated Meiyu in 2022 and 2025, and the alternating heat-rainfall Meiyu characteristics in 2023. As the frequency of extreme Meiyu events continues to increase, exerting greater socio-economic impacts across the Yangtze River Basin, the characterization and prediction of Meiyu extremity provide essential scientific support for disaster prevention, agricultural planning, and enhance our understanding of regional climate variability.

中图分类号: 

[1] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[2] 黄建平, 连鑫博, 王睿, 王丹凤, 黄忠伟, 张北斗, 胡淑娟. 大气病原微生物监测预警的研究进展[J]. 地球科学进展, 2025, 40(4): 331-347.
[3] 吴涛, 徐泽阳, 闫文琦, 费李莹, 刘荷冲, 赵靖舟, 李军, 杜治伟. 准噶尔盆地莫索湾地区侏罗系超压预测技术研究[J]. 地球科学进展, 2024, 39(4): 429-439.
[4] 李珺, 赵杨, 陈钊州, 张乐乐, 曹欢, 李世昌. 基于地球物理驱动的裂缝性地层三维坍塌压力预测及应用[J]. 地球科学进展, 2024, 39(11): 1196-1209.
[5] 贾黎黎, 李婷婷, 朱鑫, 易隆科, 罗思亮. 基于改进随机森林模型的多要素层次插值技术在土壤硒元素空间分布上的运用[J]. 地球科学进展, 2023, 38(12): 1259-1270.
[6] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[7] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[8] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[9] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[10] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[11] 郑明贵,李期. 中国20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[12] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[13] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[14] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[15] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
阅读次数
全文


摘要