地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.071

   

黄土地区深埋隧道诱发地表建筑物开裂机理研究
张海峰,李振军,滕光亮   
  1. (甘肃省建筑设计研究院有限公司,甘肃 兰州 730015)
  • 基金资助:
    甘肃省建筑设计研究院有限公司2023 年度科技项目(编号:KY2023-04)资助.

Ground Surface Building Cracking Mechanism Due to Deep Tunnels in Loess Areas

ZHANG Haifeng, LI Zhenjun,TENG Guangliang   

  1. (Gansu Institute of Architectural Design and Research Co, Ltd., Lanzhou 730015, China)
  • About author:ZHANG Haifeng, research areas include geotechnical engineering investigation and evaluation research.E-mail: 95211263@qq.com
  • Supported by:
    Project supported by the 2023 Annual Science and Technology Project of Gansu Institute of Architectural Design and Research Co., Ltd (Grant No. KY2023-04).
城市隧道(地铁)开挖引起的地表建筑物破坏事故频发,学术界对此开展了深入研究。但 针对深埋隧道开挖是否会引起地表建筑物破坏的案例与系统研究均较为稀缺。近年来,在黄土高 原西南部某隧道施工过程中,位于其上方210 m的自然村建筑物发生了多处变形、开裂等破坏现 象。为探明建筑物开裂与隧道施工的相关性及建筑物开裂机理,对研究区建筑物裂缝进行了现场 测绘和统计,使用高密度电法,对研究区地层结构和地下水迁移等情况进行探查。结果显示:①建 筑物变形、开裂与隧道开挖呈现出高度的时空一致性,裂缝主要分布在隧道中轴线3 倍隧洞直径范 围内;②物探结果表明,当隧道围岩稳定性较差时,深埋隧道开挖过程中的震(振)动会破坏地下岩 土体原生结构,形成地下水下渗通道并引起地下水位下降。饱和黄土失水固结,在建筑物荷载作 用下产生不均匀沉降,是导致地表建筑物的开裂破坏的根本原因。此外,在相同条件下,相比砖混 结构建筑物,土木结构建筑物对隧道施工的响应更为强烈,发育裂缝数量更多、宽度更大。
Abstract:Urban tunnel excavation has caused frequent incidents of surface building damage, which has attracted interests from the academic community. However, there lacks case studies of surface building damage caused by deep tunnel excavation. Therefore, it is imperative to study the impacting mechanism of deep tunnel construction on surface buildings in the vicinity, the building response modes, and formulate measures for protecting surface buildings. In recent years, excessive deformations, cracks and other damage occurred in the buildings of a village in the southwest of the Loess Plateau, below which a tunnel was constructed at a depth of 210 m. Taking this tunnel as an example, the paper explores the impact of tunnel construction on surface buildings through on-site investigations, surveying and mapping, mathematical statistics, geophysical exploration, and model analysis. Crack mapping and statistical results show that building deformation, cracking and tunnel excavation exhibit a high spatiotemporal consistency. Temporally, the occurrence and development of building cracks are almost synchronous with deep tunnel construction, and crack development lags slightly behind. Spatially, the degree of development of building cracks, building settlement, and the displacement vector of building cracks are all closely related to the tunnel. Building cracks mainly develop within three times the tunnel diameter on either side of the tunnel axes in the plane. Building type has a significant impact on the response to tunnel construction which unengineered civil structures are more sensitive to tunnel construction than masonryconcrete structures, and are more prone to severe damage. The geophysical survey results indicated that when the surrounding rock stability was poor, the vibration during deep tunnel excavation would damage the original structure of the rock and soil mass, forming a channel for underground water infiltration, and leading the groundwater table drop rapidly. Saturated loess lost water and consolidated unevenly under building loads, which was the fundamental cause of ground surface building cracking. To avoid surface building cracking induced by deep tunnel construction, it is necessary to conduct detailed engineering geological exploration before tunnel construction to identify engineering geological and hydrogeological conditions, develop a reasonable construction excavation and support and underground water seepage prevention plan. It is also important to conduct long-term safety monitoring of surface buildings.

中图分类号: 

[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[8] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[9] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[10] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[11] 李娜, 孙军杰, 王谦, 钟秀梅, 冯敏杰, 郭鹏. 黄土地基改性处理技术研究进展评述与展望[J]. 地球科学进展, 2017, 32(2): 209-219.
[12] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[13] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[14] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[15] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C3/C4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
阅读次数
全文


摘要