地球科学进展 ›› 2015, Vol. 30 ›› Issue (6): 724 -736. doi: 10.11867/j.issn.1001-8166.2015.06.0724

研究简报 上一篇    

热带平流层准两年振荡对热带对流层顶和深对流活动的影响
刘玮 1, 2, 田文寿 1, *, 舒建川 3, 张健恺 1, 胡定珠 1   
  1. 1.半干旱气候变化教育部重点实验室,兰州大学 大气科学学院,甘肃 兰州 730000; 2.青海省气象服务中心,青海,西宁,810000; 3.中国气象局成都高原气象研究所,四川,成都,610072
  • 出版日期:2015-06-25
  • 通讯作者: 通讯作者:田文寿(1968-),男,甘肃武威人,教授,主要从事大气对流、大气化学与气候模拟研究. E-mail:wstian@lzu.edu.cn
  • 基金资助:

    国家自然科学基金面上项目“平流层准两年振荡对平流层对流层物质交换的影响”(编号:41175042); 国家杰出青年科学基金项目“大气化学与气候的相互作用以及平流层对流层物质交换”(编号:41225018)资助

Effects of Quasi-biennual Oscillation on Tropical Tropopause and Deep Convective Activities

Liu Wei 1, 2, Tian Wenshou 1, Shu Jianchuan 3, Zhang Jiankai 1, Hu Dingzhu 1   

  1. 1. Key Laboratory of Semi Arid Climate Change Ministry of Education College of Atmospheric Sciences Lanzhou University Lanzhou730000 China; 2. Meteorological Service Center of Qinghai Bureau Xining810000 China; 3. Chengdu Plateau Meteorological Institute of China Meteorological Administration Chengdu 610072 China
  • Online:2015-06-25 Published:2015-06-25

利用NCEP/NCAR再分析资料通过合成分析的方法研究了热带平流层准两年振荡(QBO)影响热带对流层顶及深对流活动的基本特征及可能的物理机制。研究发现,QBO对对流层顶和大气射出长波辐射(OLR)的影响存在明显的季节和空间上的差异。QBO对对流层顶和OLR的影响在冬、秋季最大,春、夏季相对较弱。与QBO造成的对流层顶高度和温度异常所不同是,QBO造成的OLR异常并没有呈现出一样的沿热带的带状分布特征,OLR异常沿赤道区域有正有负。另外,QBO对OLR的影响主要在热带对流活跃区域,尤其是在印度尼西亚和西太平洋区域,QBO东风位相下的对流活动要强于QBO西风位相下的对流活动。QBO造成的OLR异常和对流层顶异常在水平分布上有显著的差异,表明QBO对对流层顶的影响主要是与QBO风切变的异常有关,QBO影响热带深对流活动进而影响对流层顶温度的作用是次要的。进一步研究QBO影响对流活动可能的机制发现,QBO造成的浮力频率异常和对流层有效位能(CAPE)异常与OLR异常在水平分布上有较一致的变化,说明QBO不仅通过调节对流层顶高度和温度影响热带的深对流活动,还可以通过调节对流层的静力稳定度、CAPE来影响热带地区深对流活动。

Using NCEP reanalysis data and composite method, the effects of the QuasiBiennual Oscillation (QBO) on tropical tropopause and deep convection were analyzed and the possible mechanisms were investigated. The analysis indicates that the effects of the QBO on tropical tropopause and Out going Longwave Radiation (OLR) have significant seasonal and spatial variations. The effects of the QBO on tropical tropopause and OLR are most significant in winter and autumn while relatively insignificant in spring and summer. The tropical tropopause height and temperature anomalies associated with the QBO exhibit a belted distribution in the tropics while the OLR anomalies have both positive and negative anomalies along the equator. The effect of the QBO on OLR is most significant within the convection active regions within the tropics. In Indonesia and tropical western pacific regions, in particular, the convective activities are stronger during the QBO east phase than that during the QBO west phase. The difference of the horizontal distribution between the QBO-induced tropical tropopause height anomalies and OLR anomalies implies that the effect of the QBO on tropical tropopause is mainly due to the downward propagation of zonal wind shear anomalies induced by the QBO and the indirect QBO effect on tropopause via modulating tropical convective activities is a secondary factor. Further analysis of the possible mechanisms responsible for the effect of the QBO on OLR reveals that the buoyancy frequency anomalies and Convective Potential Energy (CAPE) anomalies associated with the QBO are spatially in accordance with the QBO-induced OLR anomalies, suggesting that the QBO can affect tropical convective activities not only via modulating the tropical tropopause, but also through modulating the static stability and the CAPE in the tropical troposphere.

中图分类号: 

[1] Baldwin M P, Gray L J, Dunkerton T J, et al. The quasi-biennial oscillation[J]. Reviews of Geophysics, 2001,39(2): 179-229.
[2] Huesmann A S, Hitchman M H. The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures[J]. Journal of Geophysical Research: Atmospheres (1984-2012),2001,106(D11):11 859-11 874.
[3] Zheng Bin,Lin Ailan, Gu Dejun, et al. The latest research progress on the tropospheric biennial oscillation[J]. Journal of Tropical Meteorology, 2010,26(4):504-508.[郑彬,林爱兰,谷德军,等. 对流层准两年周期振荡最新研究进展[J]. 热带气象学报,2010,26(4):504-508.]
[4] Tian Wenshou,Tian Hongying, Shang Lin, et al. Advance in interactions between tropical stratosphere and troposphere[J]. Journal of Tropical Meteorology, 2011,27(5):765-774.[田文寿,田红瑛,商林,等.热带平流层与对流层之间相互作用的研究进展[J]. 热带气象学报,2011,27(5):765-774.]
[5] Hu Ning, Zhang Chaolin, Zhong Jiqin, et al. Advances in stratosphere troposphere exchange research[J]. Advances in Earth Science, 2011, 26(4): 765-774.[胡宁,张朝林,仲跻芹,等. 大气对流层平流层交换(STE)研究进展[J]. 地球科学进展,2011,26(4):765-774.]
[6] Plumb R A, Bell R C. A model of the quasi-biennial oscillation on an equatorial beta-plane[J]. Quarterly Journal of the Royal Meteorological Society, 1982, 108(456):335-352.
[7] Zheng Bin, Gu Dejun, Lin Ailan, et al. Investigating the mechanism of the influence of Quasi-biennual Oscillation on South China Sea Summer Monsoon[J].Science in China(Series D),2007,37(11):1 547-1 555.[郑彬,谷德军,林爱兰,等. 平流层准两年变化对南海夏季风影响机制的探讨[J]. 中国科学:D辑,2007,37(11):1 547-1 555.]
[8] Gray W M, Sheaffer J D, Knaff J A. Influence of the stratospheric QBO on ENSO variability[J]. Journal of the Meteorological:Society of Japan, 1992, 70:975-995.
[9] Randel W J, Wu F, Gaffen D J. Interannual variability of the tropical tropopause derived from radiodonde data and NCEP reanalyses [J]. Journal of Geophysical Research: Atmospheres(1984-2012),2000,105(D12):15 509-15 523.
[10] Randel W J, Wu F, Rivera Rios W. Thermal variability of the tropical tropopause region derived from GPS/MET observations[J].Journal of Geophysical Research: Atmospheres (1984-2012),2003,108(D1):ACL 7-1-ACL 7-12.
[11] Zhou X L, Geller M A, Zhang M H. Tropical cold point tropopause characteristics derived from ECMWF reanalyses and soundings[J].Journal of Climate, 2001, 14(8):1 823-1 838.
[12] Reid G C, Gage K S. Interannual variations in the height of tropical tropopause[J].Journal of Geophysical Research: Atmospheres (1984-2012),1985,90(D3):5 629-5 635.
[13] Ribera P, Peña-Ortiz C, Añel J A, et al. Quasi-biennial modulation of the Northern Hemisphere tropopause height and temperature[J]. Journal of Geophysical Research, 2008, 113(D7): D00B02,doi:10.1029/2007JD009765.
[14] Shi Chuhua, Zheng Bin, Chen Yuejuan, et al. The quasi-biennial oscillation of water vapor in tropic stratosphere[J]. Chinese Journal Geophysics, 2009,52(10): 2 428-2 435.[施春华, 郑彬, 陈月娟, 等. 热带平流层水汽的准两年周期振荡[J]. 地球物理学报, 2009, 52(10): 2 428-2 435.]
[15] Collimore C C, Martin D W, Hitchman M H, et al. On the relationship between the QBO and tropical deep convection[J]. Journal of Climate, 2003, 16(15): 2 552-2 568.
[16] Liess S, Geller M A. On the relationship between QBO and distribution of Tropical deep convection[C]//AGU Fall Meeting Abstracts. 2009, 1: 0213.
[17] Ho C H, Kim H S, Jeong J H, et al. Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific[J]. Geophysical Research Letters, 2009, 36(6),doi:10.1029/2009GL037163.
[18] Fadnavis S, Chakraborty T, Ghude S D, et al. Modulation of Cyclone tracks in the Bay of Bengal by QBO[J]. Journal of Atmospheric and Solar—Terrestrial Physics, 2011, 73(13): 1 868-1 875.
[19] Chang Fengming, Li Tiegang. Progress in the Paleoceanography of the Western Pacific Warm Pool: A review[J]. Advances in Earth Science, 2013, 28(8): 847-858.[常凤鸣,李铁刚.西太平洋暖池古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.]
[20] Huang Qiang, Chen Zishen. Regional study on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science, 2014, 29(8): 956-967.[黄强,陈子燊.全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J].地球科学进展,2014,29(8):956-967.]
[21] Taguchi M. Observed connection of the stratospheric quasi-biennial oscillation with El Niño-Southern Oscillation in radiosonde data[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010, 115(D18),doi:10.1029/2010JD014325.
[22] Gray W M. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences[J]. Monthly Weather Review, 1984, 112(9): 1 649-1 668.
[23] Pawson S, Fiorino M. A comparison of reanalyses in the tropical stratosphere. Part 3: Inclusion of the pre-satellite data era[J]. Climate Dynamics, 1999, 15(4): 241-250.
[24] Pascoe C L, Gray L J, Crooks S A, et al. The quasi-biennial oscillation: Analysis using ERA-40 data[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2005, 110(D8),doi:10.1029/2004JD004941.
[25] Shu J, Tian W, Hu D, et al. Effects of the Quasi-Biennial Oscillation and Stratospheric Semiannual Oscillation on tracer transport in the upper Stratosphere[J]. Journal of the Atmospheric Sciences, 2013, 70(5): 1 370-1 389.
[26] Hatsushika H, Yamazaki K. Interannual variations of temperature and vertical motion at the tropical tropopause associated with ENSO[J]. Geophysical Research Letters, 2001, 28(15): 2 891-2 894.
[27] Parthasarathy B, Munot A A, Kothawale D R. All-India monthly and seasonal rainfall series: 1871-1993[J]. Theoretical & Applied Climatology, 1994, 49:217-224.
[28] Emanuel K A. Atmospheric Convection[M]. Oxford: Oxford University Press, 1994.

[1] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[2] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[3] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[4] 杜岩,张涟漪,张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243-254.
[5] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[6] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[7] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[8] 戴璐. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11): 1147-1156.
[9] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[10] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[11] 张韧, 洪梅, 刘科峰, 朱伟军. 基于副热带高压异常活动个例的动力模型重构与变异特性剖析[J]. 地球科学进展, 2014, 29(11): 1250-1261.
[12] 张宏芳,潘留杰,侯建忠,李明娟. 陕西暖季雷暴的主模态及其可能的影响机制[J]. 地球科学进展, 2013, 28(9): 1025-1035.
[13] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
[14] 王凡,胡敦欣,穆穆,王启,何金海,朱江,刘志宇. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6): 595-602.
[15] 王万里, 王颢樾, 谢应齐, 王卫国,王祖武, 王凯,杜良敏,邓南圣,蔡述明,刘耀林. 夏季东亚大槽和副热带高压年代际变化的分析[J]. 地球科学进展, 2012, 27(3): 304-320.
阅读次数
全文


摘要