地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1153

环境地球化学 上一篇    下一篇

华北地区人类文化遗址的地球化学环境演变
宫进忠   
  1. 河北省地球物理勘查院, 河北 廊坊 065000
  • 收稿日期:2012-07-24 修回日期:2012-08-28 出版日期:2012-10-10
  • 基金资助:

    全国矿产资源潜力评价(编号:国土资发[2007]6号)资助

Geochemical Environment Evolution of Human Cultural Sites in North China

Gong Jinzhong   

  1. Geophysical Exploration Institute of Hebei Province, Langfang 065000, China
  • Received:2012-07-24 Revised:2012-08-28 Online:2012-10-10 Published:2012-10-10

在地球演化历史上,第四纪是人类诞生、发展和壮大的时代,它所形成的地质产物中记录了丰富的生态环境信息。河北省境内第四纪岩石地层(泥河湾组、赤城组、马兰组、迁安组)的风化指数CIA,Fe2O3/FeO,Fe/Mn等地球化学参数可作为年均气温、年均降雨量等气候因子的近似代用指标;华北地区人类文化遗址所在地水系沉积物中Hg,Sn和Au等元素含量随人类文明的演进而阶段性增高。这一结果表明,人类为了适应不断变化的自然地理环境(寒冷、干旱),不得不进行技术创新,从而产生了农业耕作、工业革命及现代信息产业等文明进步成果,但与此同时,却也导致了地质环境的人为污染,甚至可能引发全球温室效应。

In the evolutionary history of the Earth, Quaternary is the times of human birth, development and expansion and its formation geological products has recorded the rich   environment information. Weathering index CIA, Fe2O3/FeO, Fe/Mn, etc., chemical parameters of Hebei Province Quaternary lithostratigraphics (Nihewan group, Chicheng group, Malan group, Qian’an group), may serve as the average annual temperature, annual rainfall and other climatic factors similar proxy. In the stream sediments of the location of the human cultural heritage sites in North China, mercury, tin, gold and other metal concentrations reach the higher stage with the evolution of human civilization. The results show that in order to adapt to changing natural geography environment (cold, drought) human being have to make technological innovation, resulting in the advances in the civilization as farming, industrial revolution and modern information industry. But at the same time, geological environment has also led to manmade pollution, maybe even to global warming.

中图分类号: 

[1]Zhou Mulin, Liu Yourui, Chen Ming, et al. The Quaternary System of China[M]. Beijing:Geological Publishing House, 1988:64-85.[周慕林,刘佑睿,陈明,等.中国的第四系[M].北京:地质出版社,1988:64-85.]

[2]Zhang Lansheng.Research of Environment Evolution[M].Beijing:Science Press,1992:5-9.[张兰生.环境演变研究[M].北京:科学出版社,1992:5-9.]

[3]Gu Zhaoyan, Han Jiamao, Liu Dongsheng. Quaternary loess geochemistry studies progress[J].Quaternary Research,2000,20(1):42.[顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展[J].第四纪研究,2000,20(1):42.]

[4]Zhao Zhenhua. Geochemistry Principle of Trace Element[M]. Beijing:Science Press,1997:158-159,178,191.[赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:158-159,178,191.]

[5]Bureau of Geology Mineral Resoures of Hebei Province.Regional Geology of Hebei Province,Beijing Mumicipality and Tianjin Mumicipality[M].Beijing:Geological Publishing House,1989:276-299.[河北省地质矿产局.河北省北京市天津市区域地质志[M].北京:地质出版社,1989:276-299.]

[6]Wendy Ashmore, Robert J.Sharer. Discovering Our Past: A Brief Introduction to Archaeology[M]. McGraw-Hill Companies Inc.,2006:127,182-192.[温迪·安西莫,罗伯特·夏尔著,沈梦蝶译.发现我们的过去——简明考古学导论[M].上海:上海社会科学院出版社,2007:127,182-192.]

[7]Wang Zhikun, Ning Fuzheng,Fu Qiaoling,et al.An evaluation of status of soil heavy metal pollution in Luoyang City propre[J].Geophysical and Geochemical Exploration, 2008,32(4):415.[王志坤,宁富政,付巧玲,等.洛阳城区土壤重金属污染现状评价[J].物探与化探,2008,32(4):415.]

[8]Gong Jinzhong, Li Guangping. Geochemical environmental characteristics of China’s seven ancient capitals[J]. Geology in China, 2009,36(5):1 160-1 161.[宫进忠,李广平.中国七大古都的地球化学环境特征[J].中国地质,2009,36(5):1 160-1 161.]

[9]Zhao Shiyu, Zhou Shangyi. Introdution of Chinese Cultural geography[M].Taiyuan: Shanxi Education Publishing House,1991:65-66.[赵世瑜,周尚意.中国文化地理概说[M].太原:山西教育出版社,1991:65-66.]

[10]Zhibin Zhang, Huidong Tian,Bernard Cazelles,et al. Periodic climate cooling enhanced natural disasters and wars in China during AD 10-1900[J]. Proceedings of the Royal Society, Series B: Biological Sciences,doi:10.1098/rspb.2010.0890.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[8] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[9] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[10] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[11] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[12] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[13] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[14] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[15] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
阅读次数
全文


摘要