Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (2): 138-143    DOI: 10.11867/j.issn.1001-8166.2006.02.0138
“土地利用/覆盖变化与综合减灾”专辑     
土地利用变化对中国土壤碳储量变化的间接影响
周涛1,2,史培军1,3
1.北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875;2.北京师范大学资源学院资源科学研究所,北京 100875;3.北京师范大学资源学院灾害与公共安全研究所,北京 100875
Indirect Impacts of Land Use Change on Soil Organic Carbon Change in China
Zhou Tao1,2,Shi Peijun1,3
1.Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China,Beijing Normal University, Beijing 100875,China; 2. Institute of Resources Science, College of Resources Science and Technology,Beijing Normal University, Beijing 100875, China;3. Institute of Disaster and Public Security, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
 全文: PDF(129 KB)  
摘要:

中国土壤有机碳储量及其在全球变暖背景下的变化趋势是影响全球碳循环的一个重要因素。土地利用变化对土壤有机碳储量既有直接影响,也有间接影响。一方面,土地利用变化直接改变了生态系统的类型,从而改变了生态系统的净初级生产力(NPP)及相应的土壤有机碳的输入。另一方面,土地利用变化潜在地改变了土壤的理化属性,从而改变了土壤呼吸对温度变化的敏感性系数(常用Q10表示)。在全球变暖背景下,Q10值的改变显著影响着土壤有机碳释放的强度。利用生态系统碳循环过程模型(CASA模型)反演了不同土地利用类型下的Q10值,并评价了土地利用类型的改变对土壤有机碳储量变化的间接影响。研究结果表明,林地与草地转换成耕地后将增大土壤呼吸的Q10值,此外,人类通过灌溉、氮肥的施用也能增大土壤呼吸的Q10值,从而使得全球变暖背景下土壤呼吸的碳通量有所增强。

关键词: 土壤呼吸温度敏感性CASA模型中国    
Abstract:

Soil organic carbon (SOC) storage and its change trend in China is important  to the global carbon cycles under the background of global warming. Land use change has both direct and indirect influences on SOC storage. On the one hand, the land use change directly modifies the original ecosystem type and then makes the net primary productivity and soil carbon input change, which directly impacts SOC storage. On the other hand, land use change modifies some physical or chemical properties of soil and thus potentially impacts the value of temperature sensitivity of soil heterogeneous respiration (Q10). Under the situation of global warming, the changed Q10 will modify the feedback intensity of soil respiration and then indirectly impacts the soil organic carbon storage. In this study, a regional process-based carbon cycle model (CASA model) was used to estimate the Q10 values for the different land use types. Basing on the differences of Q10 among land use types, the indirect impacts of land use change on soil organic carbon storage was assessed. The results showed that the land use changes from grassland or forest to cropland will increase the value of Q10. Furthermore, the human activities, such as utilizing of irrigation and nitrogenous fertilizer will also increase the values of Q10. So, the land use change and human activities will potentially increase soil carbon releasing under the situation of global warming and then will indirectly impact soil organic carbon storage.

Key words: Soil respiration    Temperature sensitivity    Q10    CASA model    China.
收稿日期: 2005-12-20 出版日期: 2006-02-15
:  X144  
基金资助:

国家自然科学基金项目“基于遥感和过程模型反演中国土壤呼吸的关键参数”(编号:40401028);国家自然科学基金杰出青年基金项目“陆地表层人地系统相互作用机制的地理样带研究”(编号:40425008)资助.

通讯作者: 周涛     E-mail: zhoutao@ires.cn
作者简介: 周涛(1972-),男,湖南冷水江人,副教授,主要从事土地利用/覆被变化与陆地生态系统碳循环研究.E-mail:zhoutao@ires.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

周涛
史培军

引用本文:

周涛,史培军. 土地利用变化对中国土壤碳储量变化的间接影响[J]. 地球科学进展, 2006, 21(2): 138-143.

Zhou Tao,Shi Peijun. Indirect Impacts of Land Use Change on Soil Organic Carbon Change in China. Advances in Earth Science, 2006, 21(2): 138-143.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.02.0138        http://www.adearth.ac.cn/CN/Y2006/V21/I2/138

[1] Houghton J T, et al, eds. In Climate Change 2001: The Science of Climate Change[M]. New York: Cambridge University Press, 2001.

[2] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280:1 393-1 394.

[3] Piao S, Fang J, Zhou L, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochemical Cycles, 2005, 19:GB2027, doi:10.1029/2004GB002274.

[4] Zhou Tao, Shi Peijun, Wang Shaoqiang. Impacts of climate change and human activities on soil carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.[周涛,史培军,王绍强. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 地理学报,2003, 58(5): 727-734.]

[5] Zhou Tao, Shi Peijun, Sun Rui, et al. The impacts of climate change on net ecosystem production in China[J]. Acta Geographica Sinica, 2004, 59(3): 357-365.[周涛,史培军,孙睿,. 气候变化对净生态系统生产力的影响[J].地理学报, 2004, 59(3): 357-365.]

[6] Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature,2001, 413:622-625.

[7] Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003, 17(4): 1104, doi:10.1029/2003GB002035.

[8] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48:21-51.

[9] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls[J]. Biogeochemistry,2000, 48: 71-90.

[10] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Function of Ecology, 1994, 8:315-323.

[11] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soilogical Biolistry Biochemistry,1995, 27:753-760.

[12] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confound factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology,1998, 4(2):217-227.

[13] Liu X, Wan S, Su B, et al. Responses of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil,2002, 240:213-223.

[14] Reichstein M, Tenhunen J D, Ourcival J M, et al. Ecosystem respiration in two Mediterranean evergreen Holm oak forests: Drought effects and decomposition dynamics[J]. Function of Ecology, 2002, 16:27-39.

[15] Hui D, Luo Y. Evaluation of soil CO2 production and transport in duke forest using a process-based modeling approach[J]. Global Biogeochemical Cycles, 2004,18:GB4029,doi:10.1029/ 2004GB002297.

[16] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology,1989, 70:97-104.

[17] Liski J, Ilvesniemi H, Mäkelä A, et al. CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant of temperature[J]. AMBIO,1999, 28:171-174.

[18] Wan S Q, Luo Y Q. Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment[J]. Global Biogeochemical Cycles,2003, 17(2):Art. No. 1054.

[19] Fang Jingyun, Liu Shaohui, Zhao Kun. Factors affecting soil respiration in reference with temperature's role in the global scale[J]. Chinese Geographical Science,1998, 8(3): 246-255.

[20] Thompson M V, Randerson J T, Malmstrom C M, et al. Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?[J]. Global Biogeochemical Cycles,1996, 10(4):711-726.

[21] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles,1994, 8(3): 279-293.

[22] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993, 7(4):811-841.

[23] Field C B, Randerson J T, Malmstrom C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment,1995, 51: 74-88.

[24] GSDP: the global soil data products[EB/OL]. Oak Ridge, Tenn: International Geosphere-Biosphere Programme-Data and Information Services,2000[2004-03-16].httpwww.daac.ornl.gov.

[25] Qi Y, Xu M, Wu J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises[J]. Ecological Modelling,2002, 153: 131-142.

[26] Yuste J C, Janssens I A, Carrara A, et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest[J]. Tree Physiology,2003, 23:1 263-1 270.

[27] Dörr H, Münnich K O. Annual variation in soil respiration in selected areas of the temperate zone[J]. Tellus,1987, 9B:114-121.

[1] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[2] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[3] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[4] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[5] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[6] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[7] 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响*[J]. 地球科学进展, 2014, 29(7): 828-834.
[8] 魏柱灯, 方修琦, 苏筠, 萧凌波. 过去2 000年气候变化对中国经济与社会发展影响研究综述[J]. 地球科学进展, 2014, 29(3): 336-343.
[9] 潘竟虎, 刘伟圣. 基于腹地划分的中国城市群空间影响范围识别[J]. 地球科学进展, 2014, 29(3): 352-360.
[10] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[11] 葛全胜, 方修琦, 郑景云. 中国历史时期气候变化影响及其应对的启示*[J]. 地球科学进展, 2014, 29(1): 23-29.
[12] 包汉勇,郭战峰,张罗磊,黄亚平. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.
[13] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
[14] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[15] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.