地球科学进展 ›› 2003, Vol. 18 ›› Issue (6): 980 -987. doi: 10.11867/j.issn.1001-8166.2003.06.0980

研究论文 上一篇    下一篇

全球变化科学中的碳循环研究进展与趋向
曲建升,孙成权,张志强,高峰   
  1. 中国科学院资源环境科学信息中心,甘肃 兰州 730000
  • 收稿日期:2003-03-17 修回日期:2003-05-29 出版日期:2003-12-20
  • 通讯作者: 曲建升 E-mail:gcinfo@ns.lzb.ac.cn
  • 基金资助:

    国家自然科学基金委托项目“国际全球变化研究动态与科学发展”资助.

TRENDS AND ADVANCES OF THE GLOBAL CHANGE STUDIES ON CARBON CYCLE

Qu Jiansheng, Sun Chengquan, Zhang Zhiqiang,Gao Feng   

  1. The Scientific Information Center for Resources and Environment, CAS, Lanzhou 730000, China
  • Received:2003-03-17 Revised:2003-05-29 Online:2003-12-20 Published:2003-12-01

全球碳循环研究是全球变化科学中的研究重点之一,在过去的研究中已取得了长足的发展,但对碳源和汇的定量研究还是今后需要进一步加强的工作。综述了近年来全球碳库储量研究的主要进展,分析了岩石圈、陆地生态系统、海洋、大气以及人类社会等碳库的储量、在全球碳循环中的地位及其作用机制,针对与全球升温事件密切相关的人为碳排放问题专门作了论述,并结合最新的研究成果,对"未知汇"问题的新的研究方向作了阐述。碳循环研究已经进入一个新的发展时期,国际科学组织与各国政府对碳循环研究的关注与投入正逐步增加,但其关注的内容并不一致。分别以地球系统科学联盟的全球碳计划和美国的北美碳计划为例,介绍了国际碳循环研究的重点与趋势。最后提出了今后全球碳循环研究需要关注的一些领域:陆地碳循环机理与源汇定量研究;海洋大尺度碳循环及其机理研究;人类社会在碳循环中的作用研究等。

Global carbon cycle is one of the main factors that influence the global environment system. Especially, it effects the Earth climate and the atmospheric temperature, etc. Since the Industrial Revolution, more carbon dioxide has been discharged into the atmosphere which leads high atmospheric temperature. Till today, the content of the carbon dioxide in atmosphere is increasing still. Under the framework of UNFCCC and the Kyoto Protocol, more and more countries have paid attention to the problem of carbon emission. More research activities and programs have been launched. Taking the Carbon Cycle Project of ESSP and the North America Carbon Program of US as examples, the research focus and trends of this field were addressed. The carbon pools, e.g. lithosphere, ocean, terrestrial ecosystem, atmosphere, and human society, and their storages are the natural base of the carbon cycle research. The contributions to the global cycle of all the carbon pools and the budget of the carbon emission from human society were analyzed. Some suggestions were given at the end of this paper.

中图分类号: 

[1] Zhang Zhiqiang, Sun Chengquan. Advances of the Global Change Studies in the past 10 years[J]. Chinese Science Bulletin,1999,44(5):464-477.[张志强,孙成权. 全球变化研究十年新进展[J]. 科学通报,1999,44(5):464-477. ]

[2] Prinn R G. Interactional atmosphere: Global atmospheric biosphere chemistry[J]. AMBIOA Journal of the Human Environment,1994,23(1):50-59.[Prinn R G. 相互作用着的大气:全球大气生物圈化学[J]. AMBIO人类环境杂志,1994,23(1): 50-59.]

[3] Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of atmospheric carbon dioxide since 1980[J]. Nature, 1995,375:666-670.

[4] Siegenthaler U, Sarmiento J I. Atmospheric carbon dioxide and the ocean[J]. Nature, 1993, 365: 119-125.

[5] Jin Xin,Shi Guangyu. A simulation of CO2 uptake in a three dimensional ocean carbon cycle model[J]. Acta Meteorologica Sinica,2000,58(1):40-48.[金心,石广玉.海洋对人为CO2吸收的三维模式研究[J].气象学报,2000,58(1):40-48.]

[6] Ding Yihui, Geng Quanzhen. Atmosphere, Ocean, Human Activity and Global Warming[J]. Meteorology Monthly, 1998,24(3):12-17.[丁一汇,耿全震. 大气、海洋、人类活动与气候变暖[J]. 气象,1998,24(3):12-17.]

[7] Houghton J. Global Warming[M]. Dai Xiaosu, Shi Guangyu, Dong Min, et al, translate. Beijing: Meteorology Press, 1998. [Houghton J. 全球变暖[M].戴晓苏,石广玉,董敏,等译. 北京:气象出版社,1998.]

[8] Shuttleworth W J. The chanlenges of developing a changing world[J]. EOS,1996,77(36):347.

[9] Heimann M. Review of the current global carbon cycle and the prediction given by Arrhenius and Hogbum[J]. AMBIOA Journal of the Human Environment, 1997,26(1):17-24. [Heimann M. 当代全球碳循环和100年前ArrheniusHogbum的预见的回顾[J]. AMBIO人类环境杂志,1997,26(1):17-24.]

[10] IPCC. Climate Change 2001: the Scientific Basis[R]. Combridge, Newyork: Combridge University Press,2001.

[11] Xing Runan. A three-dimensional world ocean carbon cycle model with ocean biota[J]. Journal of Atmospheric Sciences,2000,24(3):333-340.[邢如楠.带生物泵三维全球海洋循环碳循环模式[J].大气科学,2000,24(3):333-340.]

[12] Yang Pingyou. Cause of the increasing concentration of the GHGs and its impacts to the climate[J]. Henan Weather, 2000,(2):19. [杨平有.温室气体浓度增加的原因及对气候的影响[J].河南气象,2000,(2):19.]

[13] Guo Liping, Lin Erda. Research advances on mitigating global warm and greenhouse gas sequestration[J]. Advances in Earth Sciences, 1999,14(4):384-390.[郭李萍,林而达. 减缓全球变暖与温室气体吸收汇研究进展[J]. 地球科学进展,1999,14(4):384-390.]

[14] Zhu Yuenian,Wu Xinnian. Geological Study of Carbon Dioxide[M]. Lanzhou: Lanzhou University Press, 1994.1-13.[朱岳年,吴新年. 二氧化碳地质研究[M]. 兰州:兰州大学出版社,1994. 1-13. ]

[15] Ruddiman W F, Prell W L. Introduction to the uplift-climate connection[A]. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change[C]. New York: Plenum Press,1997.471-509.

[16] Qin Jianhua, Pan Guitang, Du Gu. The effects of Cenozoic tectonic uplift on earth surface chemical weathering and global climate change[J]. Earth Science Frontiers,2000, 7(2):517-524.[秦建华,潘桂棠,杜谷. 新生代构造抬升对地表化学风化和全球气候变化的影响[J].地学前缘,2000, 7(2):517-524.]

[17] Blum J D. The effect of late Cenozoic glaciation and tectonic uplift on silicate weathering rates and the marine 87Sr/86Sr record[A]. In: Ruddiman W F,ed. Tectonic Uplift and Climate Change[C]. New York:Plenum Press,1997.260-286.

[18] Bluth G J S, Kump L R. Lithologic and climatalogic controls of river chemistry[J]. Geochimet Cosmo Acta, 1994,58:2 341-2 355.

[19] Yuan Daoxian. Karst Science in China[M]. Beijing:Geology Press,1993.[袁道先.中国岩溶学[M].北京:地质出版社,1993.]

[20] Yuan Daoxian. Progress in the study on karst processes and carbon cycle[J]. Advances in Earth Sciences, 1999,14(5):425-431.[袁道先.“岩溶作用与碳循环研究进展[J]. 地球科学进展,1999,14(5):425-431.]

[21] Liu Zaihua, Yuan Daoxian, He Shiyi, et al. Contribution of carbonate rock weathering to the atmospheric CO2 sink [A]. Proceedings of the 28th IAH Conference[C]. Las Vegas, USA, 1998. 187-193.

[22] Liu Zaihua, Dregbroat W. Dissolution kinetics of calcium carbonate minerals in H2O- CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2 =H++HCO-3[J]. Geochimca et Cosmochimica Acta,1997,61(14):2 879-2 889.

[23] Jiang Zhongcheng,Yuan Daoxian. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22(1): 33-35. 

[24] Yuan Daoxian. The carbon cycle in karst[J]. Z Geomorph N F, 1997,(Suppl-Bd 108):91-102.

[25] Xu Shengyou, Jiang Zhongcheng. Primary estimate of the relationship between the action of karst and the atmospheric CO2 source/sink in China[J]. Chinese Science Bulletin,1997,42(9):953-956.[徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956.]

[26] Cao Yuqing, Hu Kuanrong, Zhang Yongxiang. Hydrological Geology of the Karst Chemical Environment[M]. Changchun:Press of Jilin University, 1994.[曹玉清,胡宽瑢,张永祥.岩溶化学环境水文地质学[M].长春:吉林大学出版社,1994.]

[27] Liu Mingzhu, Zhang Yongxiang, Cheng Honghan. The studies on carbon cycle in Diaoshuihu kar regions of Jilin Province[J]. Karst of China,18(2):129-134.[刘明柱,张永祥,陈鸿汉.吉林省吊水壶岩溶区碳循环研究[J].中国岩溶,18(2):129-134.]

[28] Cao Mingkui, Li Kerang. Perspective on terrestrial ecosystem-climate interaction[J].Advances in Earth Sciences, 2000,15: 446-452. [曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展,2000,15(4):446-452.]

[29] WBGU. WBGU Special Report:The Accounting of Biological Sinks and Sources Under the Kyoto Protocol[R].1998.

[30] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemistry Cycle, 1996,10(1):23-41.

[31] Keme S. Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters[J]. J Geophys Res, 1984,89(D3):4 657-4 676.

[32] Gao Quanzhou, Shen Chengde. Revering carbon flux and continental erosion[J]. Advances in Earth Sciences, 1998,13(4):369-375.[高全洲,沈承德. 河流碳通量与陆地侵蚀研究[J]. 地球科学进展,1998,13(4):369-375.]

[33] Sundquist E T. Budgets of global carbon dioxide[J]. Science, 1993,259:934-940.

[34] Toggweiler J R. Anthropogenic CO2:The natural carbon cycle reclaims[J]. Reviews of Geophysics,1995, (Supp): 1 249-1 252.

[35] Keeling C D,Piper S C,Heimann M. A three dimensional model of atmospheric CO2 transport based on observed winds.IV:Mean annual gradients and interannual variations[A]. In: Peterson D H,ed. Aspect of Climate Variability in the Pacific and the Western American[C].Washington D C:Geophys Monogr 55 AGU,1989. 305-363.

[36] Azam F,Fenchel T,Gray J G,et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser,1983,10:257.

[37] Caise P, Trans P P, Trolier M. A large northern hemisphere terristrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2[J]. Science, 1995,269:1 098-1 101.

[38] Prentice K C,Fung I Y. The sensitivity of terristrial carbon storage to climate change[J]. Nature, 1990,346: 48-50.

[39] Jia Guodong, Duang Guangjie, Zhong Zuosheng. Groundwater exploitation: An important CO2 source[J]. Earth Science—Journal of China University of Geosciences,2002,27(2):153-156.[贾国东,段光杰,钟佐燊. 地下水开采——重要的CO2排放源[J].地球科学——中国地质大学学报,2002,27(2):153-156.]

[40] Houghton R A. Changes in storage of terrestrial carbon since 1859[A]. In:Lal R,Kimbkle J,Leine E, et al eds. Soil and Global Change[C]. Boca Raton: CRC Press,1995.45-65.

[41] Davidson E A, Ackermann I L. Changes in soil carbon inventories following cultivation of previously untilled soils[J]. Biogeochemistry, 1993,20:161-193.

[42] Sauerbeck D. Temprature Agricultural Systems[Z]. IPCC Update WgII AFOS Section 2,1992.

[43] Houghton J T, Meira F L G, Callander B A, et al. Climate Chang 1995:The IPCC Scientific Assessment[R]. New York: Cambridge University Press, 1996.

[44] IPCC.IPCC Report on Land Use, Land-use Change, and forestry(SRLULUCF)[R]. http://www.grida.no/climate/ipcc/ land_use/. 2000.

[45] Hibbard K, Raupach M, Canadell J. The global carbon Project: linking the biophysical and human components of the carbon cycle[J]. Global Change Newsletter,2002,No 50,39-41.

[46] Wofsy S C, Harriss R C. The North American Carbon Program, Report of the NACP Committee of the U. S.Interagency Carbon Cycle Science Program[R]. Washington,DC:US Global Change Research Program.2002.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[7] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[8] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[9] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[10] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[11] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[12] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[13] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[14] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[15] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
阅读次数
全文


摘要