地球科学进展 ›› 2003, Vol. 18 ›› Issue (1): 116 -121. doi: 10.11867/j.issn.1001-8166.2003.01.0116

研究论文 上一篇    下一篇

激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展
刘民武,赫英   
  1. 西北大学大陆动力学教育部重点实验室,西北大学地质系,陕西 西安 710069
  • 收稿日期:2002-06-10 修回日期:2002-08-23 出版日期:2003-02-10
  • 通讯作者: 刘民武 E-mail:liuminwu@hotmail.com
  • 基金资助:

    国家重点基础研究发展规划项目“大规模成矿作用与大型矿集区预测”(编号:G1999043211);国土资源大调查项目“中国超大型铜镍铂岩浆硫化物矿床预测研究” (编号:200110200058)资助.

PROGRESS OF LASER ABLATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (LA-ICPMS) APPLIED IN EARTH SCIENCE

Liu Minwu, He Ying   

  1. Department of Geology, Northwest University, Xi'an 710069, China
  • Received:2002-06-10 Revised:2002-08-23 Online:2003-02-10 Published:2003-02-01

当前分析化学技术正向着痕量微区方向发展。这使得我们能够用更小更少的样品直接得到更多的地球化学信息。在诸多微区测试技术中,激光剥蚀等离子质谱(LA-ICPMS)技术发展最快。其地质应用较广,激光探针等离子体质谱能够进行固体样品的微区微量元素和同位素的分析,具有灵敏度高、简便、快速的特点,同样具有在同位素定年上的潜力。近年来又研制出激光剥蚀多道接收等离子质谱(LA-MC-ICPMS)仪,使得微区同位素分析开始了新的革命。而多种微区技术综合应用为近几年分析地球化学新的趋势。

More geological information can be obtained from very small samples due to the analytical technique development toward trace elements and in micro area. Within all of the microprobe techniques, the laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) has became even more powerful tool to geological samples in the quantitative analysis of major and minor element in   situ owe to the very high sensitivity of ICPMS and direct laser sampling. Many works have done in minor element and REE normalization modeling, trace metal and PGE partitioning in minerals and magma, fluid inclusions and isotope age dating analysis. The LA-ICP-MS technique is capable not only of achieving precise trace elemental analysis, but also of dating 207Pb/206Pb ages at about the 1% level for?1000 Ma zircons,206Pb/238U ages with precision of 2%~5% for Mesozoic(156~126 Ma)zircons. lt is likely that this simple and relatively low cost technique is able to achieve age results even comparable to the SHRIMP-type ion probe in the measurement of the relatively large(>100μm) and homogeneous zircons. However, it still has the disadvantage of lower spatial resolution and sensitivity, standard samples incomparable with some samples to be analyzed, which limits its application to precise analyzing minerals with relatively lower REE and dating of small and/or heterogeneous zircons of Phanerozoic ages. Recently developed laser ablation multiple collector inductively coupled plasma(LA-MC-ICPMS)put forward the isotope concentration in situ analysis technique in sensitivity and simplicity. Multiple using of varies in situ techniques for combined information is the new trend in analytical geochemistry.

中图分类号: 

[1] Xu Ping, Guan Hong, Sun Min, et al. The methodology study of trace element in-situ analyses using laser ablation inductively coupled plasma mass spectrometer[J]. Acta Petrologica Sinica, 2000, 16(2)291-304. [徐平, 关鸿, 孙敏,. 激光探针电感藕合等离子体质谱在位测定微量元素方法研究[J]. 岩石学报, 2000, 16(2)291-304.]

[2] Liang Xirong,Li Xianhua,Liu Ying,et al. Study on relative elemental responses and matrix effects in analysis of rock samples by LAM-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2000, 19(2)13-17. [梁细荣, 李献华, 刘颖,. 激光探针等离子质谱法分析岩石样品时相对元素响应及基体效应[J]. 分析试验室, 2000,19(2) 13-17.]

[3] Liang Xirong, Li Xianhua, Liu Yongkang, et al. U-Pb isotopic dating of young zircons by laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICPMS)[J]. Geochimica, 2000, 29(1)1-5. [梁细荣, 李献华,刘勇康,. 激光探针等离子体质谱法 (LAM-ICPMS) 用于年轻锆石U-Pb定年[J]. 地球化学,2000, 29(1) 1-5.]

[4] Hu Shenghong, Hu Zhaochu, Liu Yongsheng, et al. New techniques of maJor and minor elemental analysis in individual fluid inclusion—laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth Science Frontiers, 2001, 8 (4)434-440. [胡圣虹, 胡兆初, 刘勇胜等. 单个流体包裹体元素化学组成分析新技术——激光剥蚀电感耦合等离子体质谱 (LA-ICP-MS)[J]. 地学前缘2001, 8 (4) 434-440.]

[5] Liu Chi, Mu Zhiguo, Huang Baoling. The research development of laser probe combined with mass spectrometer techniques on isotope geochemistry[J]. Journal of Chinese Mass Spectrometry Society, 1994, 15(3)10-16. [刘驰, 穆治国, 黄宝玲.  激光探针质谱联用技术在同位素地球化学中的研究进展[J]. 质谱学报, 1994, 15(3)10-16.]

[6] Liang Xirong, Li Xianhua, LiuYing, et al. Laser ablation microprobe inductively coupled plasma mass spectrometryA new method for rapid determination of multiple elements in rock samples[J]. Journal of Instrumental Analysis, 2000, 191):106-117. [梁细荣, 李献华, 刘颖,. 激光熔蚀微探针电感耦合等离子体质谱法——一种快速测定岩石样品中多个元素的新方法[J]. 分析测试学报, 2000, 191):106-117.]

[7] Prince C I,Kosler J,Vance D,et al. Comparison of laser ablation ICP-MS and isotope dilution REE analyses—implications for Sm-Nd garnet geochronology[J]. Chemical Geology, 2000, 168255-274.

[8] Bea F, Montero P,Garuti G, et al. Pressure-dependence of rare earth element distribution in amphibolite- and granulite- grade garnets: A LA-ICP-MS study[J]. Geostandard Newsletter, 1997, 21253-270.

[9] Ballhaus C, Sylvester P. Noble metal enrichment processes in the Merensky Reef, Bushveld complex[J]. Journal of Petroleum, 2000, 41545-561.

[10] Sylvester P J, Eggins S M. The development of laser ablation ICP-MS and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals[J]. Geostandard Newsletter, 1997, 21215-229.

[11] McCandless T E,LaJack D J,Ruiz J, et al. Trace element determination of single fluid inclusions in quartz by laser ablation ICP-MS[J]. Geostandard Newsletter, 1997, 21279-287.

[12] Wei GangJian, Liang Xirong, Li Xianhua. MaJor and trace elemental compositions of the microtektites from ODP Site 1144[J]. Geochimica, 2002, 31(1): 35-42.[韦刚健, 梁细荣, 李献华. ODP 1144站钻孔沉积物中微玻璃陨石的元素地球化学特征[J]. 地球化学, 2002, 31(1): 35-42.]

[13] Eggins S M, Rudnick R L, McDonough W F. The composition of peridotites and their minerals: A Laser-ablation ICP-MS study[J]. Earth and Planetary Science Letters, 1998, 154(1)53-71.

[14] Taylor R P, Jackson S E, Longerich H P, et al. In-situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS)[J]. Geochimica et Cosmochimica Acta, 1997, 612 559-2 567.

[15] McCandless T E,Baker M E, Ruiz J. Trace element analysis of natural gold by laser ablation ICP-MS: A combined external/internal standardisation approach[J]. Geostandard Newsletter, 1997, 21271-278.

[16] Audétat A,Güther D J, Heinrich C A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICPMS analysis of fluid inclusions[J]. Science, 1998, 279(5 359)2 091-2 094.

[17] Heinrich C A, Güther D J,Audétat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J]. Geology, 1999, 27755-758.

[18] Ulrich T, Güther D J, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399676-679.

[19] Audétat A, Güther D J. Mobility and H2O loss from fluid inclusions in natural quartz crystals[J]. Contributions to Mineralogy and Petrology, 1999, 1371-14.

[20] Xu Ping, Guan Hong, Sun Min, et al. Further discussion on analytical methology and calibration strategies for Pb-Pb isotope analyses of zircon by LP-ICPMS[J]. Geochimica, 1999, 28(2)136-144. [徐平, 关鸿, 孙敏,. 激光探针等离子体质谱用于锆石Pb-Pb定年的分析和校正方法的进一步探讨[J]. 地球化学, 1999, 28(2)136-144.]

[21] Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology [J]. Chemical Geology, 2000, 167:405-425.

[22] Li Xianhua, Liang Xirong, Sun Min, et al. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology, 2001, 175 (3/4): 209-219.

[23] Li Xianhua, Liang Xirong, Sun Min, et al. Geochronology and geochemistry of single-grain zircon: Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5): 1 015-1 024.

[24] Guan Hong, Sun Min, Xu Ping. Geochronological study of zircons from high-grade gneisses of Fuping complex by LP-ICPMS technique[J]. Acta Petrologica Sinica, 1998, 14(4)460-470. [关鸿, 孙敏, 徐平. 阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学研究[J]. 岩石学报, 1998, 14(4) 460-470.]

[25] Jon Davidson, Frank Tepley III , Zenon PalaczMagma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks[J]. Earth and Planetary Science Letters, 2001, 184(2): 427-442.

[26] Yan Xin, Chu Zhuyin, Xu Ping, et al. Attempt to determine hyaciarth microfield 207Pb/206Pb with plasma mass spectrometry by a laser probe[J]. Chinese Science Bulletin, 1998, 43(19)2 101-2 105.[阎欣, 储著银, 徐平,. 激光探针等离子体质谱法锆石微区207Pb/206Pb测定尝试[J]. 科学通报, 1998, 43(19) 2 101-2 105.]

[27] Scott D J, Gauthier G. Comparison of TIMS (U-Pb) and laser ablation microprobe ICP-MS (Pb) techniques for age determination of detrital zircons from Paleoproterozoic metasedimentary rocks from northeastern Laurentia, Canada, with tectonic implications[J]. Chemical Geology, 1996, 131127-142.

[28] Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J]. Geochimica et Cosmochimica Acta, 1996, 605 063-5 073.

[29] Yin Q Z, Jacobsen S B, McDonough W F, et al. Supernova sources and the 92NB-92ZR P-process chronometer[J]. Astrophysics Journal, 2000, 535L49-L53.

[30] Griffin W L,Pearson N J,Belousova E,et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64133-147.

[31] Liu Haichen, Zhu Bingquan, Zhang Zhanxia. Single zircon dating by LAM-ICPMS technique[J]. Chinese Science Bulletin, 1998, 43(10)1 103-1 106. [刘海臣, 朱炳泉, 张展霞. LAM-ICPMS法用于单颗粒锆石定年研究[J]. 科学通报, 1998, 43(10)1 103-1 106.]

[32] Hoskin P W O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques[J]. Journal of Trace Microprobe Technique, 1998, 16301-326.

[33] Horn I,Hinton R W, Longerich H P, et al. Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe inductively coupled plasma-mass spectrometry (LAM-ICP-MS): A comparison with secondary ion mass spectrometry (SIMS)[J]. Geostandard Newsletter, 1997, 21191-203.

[34] Norman M D,Pearson N J,Sharma A, et al. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses[J]. Geostandard Newsletter, 1996, 20247-261.

[35] Ertel W, O'Neill H St C, Sylvester P, et al. Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1 300[J]. Geochimica et Cosmochimica Acta, 1999, 632 439-2 449.

[36] Holzheld A, Sylvester P, O'Neill H St C, et al. Evidence for a late chondritic veneer in the earth’s mantle from high-pressure partitioning of palladium and platinum[J]. Nature, 2000, 406396-399.

[37] Audétat A, Güther D J, Heinrich C A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F mineralized mole granite (Australia)[J]. Geochimica et Cosmochimica Acta, 2000, 643 373-3 393.

[38] Schaltegger U, Fanning C M, Güther D J, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence[J]. Contributions to Mineralogy and Petrology,  1999, 137186-201.

[39] Poitrasson F, Chenery S, Shepherd T J. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics[J]. Geochimica et Cosmochimica Acta, 2000, 643 283-3 297.

[40] Ballard J R, Palin J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29(5): 383-386.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[10] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[11] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[12] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[13] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[14] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[15] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
阅读次数
全文


摘要