地球科学进展 ›› 2002, Vol. 17 ›› Issue (3): 446 -451. doi: 10.11867/j.issn.1001-8166.2002.03.0446

生态学研究 上一篇    下一篇

作物生态位构建的模型及其进化惯量与动量的试验研究
李文龙,李自珍   
  1. 兰州大学干旱农业生态国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2001-08-03 修回日期:2001-10-30 出版日期:2002-12-20
  • 通讯作者: 李文龙(1977-),男,甘肃省兰州市人,博士研究生,主要从事地植物学与GIS技术应用研究.E-mail:leewlong@263.net E-mail:leewlong@263.net
  • 基金资助:

    国家重点基础研究发展规划项目“生态系统生产力形成机制”(编号:G2000018603);中国科学院寒区旱区环境与工程研究所知识创新工程项目“黑河流域水资源生态承载力与风险分析”(编号:CACX210085);国家自然科学基金项目“沙漠植物生态位构建与生活史进化对策研究”(编号:39970135);“荒漠区人工自然景观空间格局及其生态风险分析”(编号:30070139)资助.

THE NICHE CONSTRUCTION MODEL OF CROP AND ITS RESEARCH ON EVOLUTIONARY INERTIA AND EVOLUTIONARY MOMENTUM

LI Wen-long, LI Zi-zhen   

  1. The State Key Laboratory of Arid Agroecology, Lanzhou  University,Lanzhou 730000,China
  • Received:2001-08-03 Revised:2001-10-30 Online:2002-12-20 Published:2002-06-01

物种生态位构建与其进化关系的研究属于生态位理论的新进展。以半干旱区作物为对象,系统地分析了生态位内涵的发展及生态位构建机理,研究了作物种与环境变化间协同进化的特殊规律,提出用作物生态位的适合程度测定其进化惯量,用现实生态位对其中心点的偏离程度测定进化动量,并建立了相应的数学模型,进行实例的计算分析,主要结果有:①作物种的生态位构建机制,从进化尺度上具体描述了作物通过其新陈代谢、活动与选择来确定自身的生态位(包括部分的产生、毁灭)。基于Hutchinson的生态位理论,建立了 n维超体积生态位的构建模式。②根据进化惯量与进化动量对生态位构建的作用,所进行的实例计算与分析的结果显示:自然选择与人工选择的压力具有异向性,生态位构建导致了进化惯量和进化动量不同的变化规律;作物的传统品种与新品种相比,具有较强的进化惯量与较弱的进化动量;在自然选择与人工选择双重作用下,作物生态位的构建机制有其特殊性。③在作物种进化与可变环境资源的耦合关系分析中,随着土壤养分的增加,作物进化惯量递增而进化动量递减,这从进化角度上揭示了土壤养分变化对作物生态位构建的影响。以上结果可为作物品种选育与农田人工调控提供理论依据。

The research of the relation between niche construction of crop and its evolution belongs to the new field in the niche theory. Taken the crop in semi-arid region as the object,the  paper systematically analyzes the development of the niche connotation and the mechanism of the niche construction,researches the special law of the cooperated evolution between the crop species and the change of their environments,proposes the evolutionary inertia measured by the fitness of the crop niche and the evolutionary momentum measured by the deviation between the real niche and the center point,and constructs the corresponding mathematical model and analyzes the real experiment data.The main results are:
    (1) Niche construction describes the crop species with evolution scale,materially.Crops determine its niche through metabolism,action and selection,including some creation and destruction of its niche.Based on the Hutchinson’s niche theory ,the paper build up the pattern of n-dimensional hypervolume niche construction.
(2) On the change of evolutionary inertia and momentum with the effect of niche construction,the calculation and analysis show that the pressures of the natural selection and the artificial selection have different directions,and the niche construction can lead to different law of evolutionary inertia and weaker evolutionary mementum.Due to the double  effects of natural and artificial selection,the rule of crop is special compared with the natural one in the natural one in the niche construction.
(3) On the relation between the crop evolution and the changeable resources in its enviroments,the evolutionary inertia increases and the evolutionary momentum decrease with the increasing of the soil nutrients.It is the evolutionary effect on niche construction by soil nutrients.The above results can be the theoretical supports to the breed and selection of the crop species and the artificial regulation of the crop fields.

中图分类号: 

[1]May R.Theoretical Ecology [M].Translated by Sun Ruyong.Beijing: Science Press, 1982.116-143.[梅著,理论生态学[M].孙儒泳译.北京:科学出版社,1982.116-143.]
[2]Grinnel J.Geography and evolution[J].Ecology,1924,5:225-229.
[3]Elton C.The Eology of Animals[M]. London:Methuen & Co LTD,1957.
[4]Hutchinson G E.Concluding remarks[J].Cold Spring Harbor Symp Quant Biol,1957,22:415-427.
[5]Macarthur R H,Levins R.The Limiting similarity convergence and divergence of coexisting species[J].The American Naturalist,1967,101:377-385.
[6]Van Valen L.Marphologlcal variation and width of ecological niche[J].Ecology, 1965.99:377-390.
[7]Levins R. Evolution in Charing Environments[M].Princeton:Princeton University Press,1968.
[8]Grubb P J. The maintenance of species-richness in plant communities:the importance of the regeneration niche[J].Biol Rev,1977,52:107-145.
[9]May R M.On the theory of niche overlap[J]. Theoretical PoPulation Biology,1974,5:297-332.
[10]Pinaka E R.The structure of lizard communities[J].Ann Rev Ecol Syst,1973,4:35- 74.
[11]Smith E P. Niche breath, resource availability and inference[J]. Ecology,1982,  63:1 675-1 681.
[12]Odling-Smee P J, Laland K N, Feldman M W. Niche construction[J].American Naturalist, 1996,147(4),641-648.
[13]Laland K N, Odling-Smee F J,  Feldman M W.The evolutionary consequences of niche construction:a theoretical investigation using two-locus theory[J].Journal of Evolutionary Biology,1996,13(9):293-316.
[14]Laland K N,Odling F J,  Feldman M W. Evolutionary consequences of niche construction and their implications for ecology[A]. Proc Natl Acad Sci USA[C]. l996,96:10 242-10 247.
[15]Li Zizhen,Lin Hong.The niche-fitness model of crop population and its application[J]. Ecological  Modelling,1997,104:199-203.
[16]Li Zizhen, Lin Hong. Research on the regulation of water and fertilizers and a crop growth model of spring wheat in farmland of semi-arid regions[J].Ecological Modelling,1998,107:279-287.
[17]Wang Gang, Zhao Songling, Zhang Pengyun, et al.Discussing on niche definition and studies on developing measuring formula of niche overlap[J].Acta Ecologia Sinica,1984,(2):1-9.[王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠公式改进的研究[J].生态学报,1984,(2):1-9.]
[18]Li Zizhen,Lin Hong.Study on the relation of niche fitness degree of spring wheat and its yield[J].Progress in Natural Sciences, 1998,8(2):137-141.[李自珍,林红.春小麦生态位适宜度与产量关系的研究[J].自然科学进展,1998, 8(2):137-141.]
[19]Yu Shixiao,  Orloci L.On the implications of fundamental,realized niche and niche center[J].Journal of Shantou University,1993,32(4):69-79.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[4] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[5] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[6] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[7] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[10] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[13] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[14] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[15] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
阅读次数
全文


摘要