地球科学进展 ›› 1999, Vol. 14 ›› Issue (2): 164 -167. doi: 10.11867/j.issn.1001-8166.1999.02.0164

综述与评述 上一篇    下一篇

REE示踪沉积物物源研究进展
杨守业,李从先   
  1. 同济大学海洋地质开放实验室,上海 200092
  • 收稿日期:1998-07-20 修回日期:1998-11-20 出版日期:1999-04-01
  • 通讯作者: 杨守业,男,1971年2月出生,博士生,主要从事海洋沉积及沉积地球化学研究。

RESEARCH PROGRESS IN REE TRACER FOR SEDIMENT SOURCE

YANG Shouye, LI Congxian   

  1. Laboratory ofMarine Geology,Tongji University,Shanghai 200092,China
  • Received:1998-07-20 Revised:1998-11-20 Online:1999-04-01 Published:1999-04-01

REE作为一种重要的沉积物物源示踪剂运用很广。在介绍了REE性质的基础上,对海水、河水、沉积岩、河流及边缘海沉积物中的REE元素丰度与配分模式特征进行了深入综述,概述了影响和控制REE丰度、模式及分馏特征的主要因素;论述了REE的物源示踪意义以及在国内外应用情况与存在问题:源岩风化对REE分馏的影响;颗粒搬运及沉积时水动力分选对REE分馏可能造成的影响,即不同粒级中REE不同的丰度与配分模式和碎屑矿物对沉积物中REE含量与模式影响,以及REE标准化与REE测试时可能存在的问题等。

As an important tracer, REE is widely used to trace provenance of various sediments and sedimentary rocks. This paper firstly describes the characteristics of REE, then summarizes REE abundance and distribution patterns in seawater, freshwater , sedimentary rocks and sediments, and theirmain controlling factors. At lastthe application and problems of REE as a source rock tracer are also described in detail. Weathering of source rock can produce REE fractionation, especially during strong chemical weathering; Transport of particles and hydrodynamic sorting during formation of sediment also have potential influences on REE characters in sediment. REE abundance and patterns are different in different grain-sized sediments. It is generally regarded that clay has REE compositionmost close to source rock, whereas sandy sediment differentiates fromsource rock inREE composition, because detritusminerals can alsoobviously influence REE content and distribution patterns in sediment. REE normalizing and determining problems are discussed in the end of the paper.

中图分类号: 

〔1〕Cullers R L, Barrett T, Carlson R,et al. REE and mineralogic changes in Holocene soil and stream sediment. Chem Geol,1987,63:275~297.
〔2〕Cullers R L , Basu A, Suttner L J. Geochemical signature of provenance in sand-size mineral in soil and stream near the tabacco root batholith, Montana, USA. Chem Geol, 1988,70:335~348.
〔3〕McLennan SM, Taylor S R. Sedimentary rocks and crustal evolution:tectonic setting and secular trands. The J Geol,1991,99:1~21.
〔4〕McLennan S M. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes. In: Lipin B R , McKay G A,eds. Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy,1989,21:169~200.
〔5〕Taylor S R, McLennan SM. The continental crust:Its composition and evolution. Blackwell, 1985, 312.
〔6〕Girty GH.Provenance and depositional setting of Paleozoic chert andargillite,Sierra Nervada, California. JSedi Res, 1996, 66 (1):107~118.
〔7〕Grigsby J D. Detrital magnetite as a provenance indicator. J Sedi Petrol, 1990,60(6):940~951.
〔8〕Morton A C. Geochemical studies of detrital heavy minerals and their application to provenance research.In:Morton A C, eds. Development in sedimentary provenance studies,1991.31~45.
〔9〕Murray R W, Brink M R, Brumsack H J,et al. REE in Japen Sea sediments and diagenetic behavior of Ce/Ce*:Results from ODP Log 127. Geochim Cosmochim Acta, 1991,55:2 453~2 466.
〔10〕Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedi Geol, 1994,90: 213~232.
〔11〕Byrne RH, KimK -H. Rare earth element scavening in seawater.Geochim Cosmochim.Acta, 1990,54:2 645~2 656.
〔12〕Lee J H, Byrne RH. Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim Cosmochim Acta, 1992,56:1 127~1 138.
〔13〕Lee J H, Byrne R H. Complexation of trivalent rare earth elements(Ce,Eu,Gd,Tb,Yb) by carbonate ions. Geochim Cosmochim Acta,1993, 57:295~302.
〔14〕Millero F J. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. GeochimCosmochimActa, 1992,56:3 123~3 132.
〔15〕Cantrell KJ, Byrne RH. Rare earth element compexation by carbonate and oxalate ions. Geochim Cosmochim Acta, 1987, 51:597~605.
〔16〕Turner D R. The equilibrium speciation of dissolved components in freshwater and seawater at 25℃and 1 atm. GeochimCosmochimActa, 1981,45:855~881.
〔17〕Goldstein S J, Jacobsen S B. Rare earth elements in river waters.Earth and Planetary Science Letters, 1988,89:35~47.
〔18〕Sholkovitz E R, Jacobson S B. Ocean particle chemistry : the fractionation of REE between suspended particles and seawater. Geochim Cosmochim Acta, 1994,58:1 567~1 579.
〔19〕Piper D Z. Rare earth elements in the sedimentary cycle: a summary.Chem Geol, 1985,14:285~304.
〔20〕ElderfieldH, Upstill-Goddard R, Sholkovitz ER. The rare earth elements in rivers,estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta, 1990,54:971~991.
〔21〕RollinsonHR. Using Geochemical Data. Lonman Scientific&Technical,1993.
〔22〕Gromet L P, Dymek R F, Haskin LA,et al. The“North American Shale Composite”: Its complilation, major and trace element characteristics. Geochim Cosmochim Acta, 1984,48:2 469~2 482.
〔23〕Haskin MA, HaskinLA. REE in European shales: Aredetermination. Science, 154, 507~509.
〔24〕Condie K C. Another look at REEs in shales. Geochim Cosmochim Acta, 1991,55:2 527~2 531.
〔25〕Sholkovitz E R. Rare earth elements in marine sediments and geochemical standards. Chemi Geol,1990,88:333~347.
〔26〕Sholkovitz ER. Rare earth elements in the sedimentsofthe North Atlantic Ocean,Amazon Delta, and East China Sea: Reinter-pretation of terrigenous input patterns to the oceans. Am J Sci, 1988,288:236~281.
〔27〕Nesbitt HS, Young G W. Petrogenesis of sediment in the absence of chemical weathering: effencts of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 1996, 43:341~358.
〔28〕Nesbitt H W, MacRae N D, Kronberg B I. Amazon deep-sea fan muds: Light REE enriched products of extreme chemical weathering.Earth Planet Sci Lett, 1990, 100;118~123.
〔29〕Roaldest E. REE in Quaternary clays of the Numedal area,southern Norway. Lithos, 1973,6:349~372.
〔30〕杨忠芳,陈岳龙.陆源碎屑沉积作用对化学元素配分的制约.地质论评,1997,43(6):593~600.
〔31〕王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989.
〔32〕Suttner L J, Basu A. Climate and the origin of quartz arenite. J Sedi Petrol, 1981,51(4):1 235~1 246.
〔33〕Johnsson M J,Robert F S, Robert HM. First-cycle quartz arenite in the Orinoco River basin,Venezuela and Colombia. J Geol, 1988,96:263~277.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[4] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[5] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[6] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[7] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[8] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[9] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[10] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[11] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[12] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[13] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[14] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[15] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
阅读次数
全文


摘要