地球科学进展 ›› 1998, Vol. 13 ›› Issue (4): 327 -333. doi: 10.11867/j.issn.1001-8166.1998.04.0327

干旱气候变化与可持续发展 上一篇    下一篇

植被指数研究进展
田庆久 1,闵祥军 2   
  1. 1.中国科学院遥感应用研究所 北京 100101;2.北京师范大学资源与环境系 北京 100875
  • 收稿日期:1997-10-20 修回日期:1998-02-05 出版日期:1998-08-01
  • 通讯作者: 田庆久

ADVANCES IN STUDY ON VEGETATION INDICES

Tian Qingjiu 1,Min Xiangjun 2   

  1. 1.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101;2.Department of Resource & Environment Science, Beijing Normal University, Beijing 100875
  • Received:1997-10-20 Revised:1998-02-05 Online:1998-08-01 Published:1998-08-01

在遥感应用领域,植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由于植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度复杂混合反应,而且受大气空间—时相变化的影响,因此植被指数没有一个普遍的值,其研究经常表明不同的结果。20多年来,已研究发展了40多个植被指数。该文对已有的大部分植被指数进行了归纳分类,评价其各自优势和局限性,并探讨了未来研究的方向,这将有助于遥感在农业、植被和生态环境监测方面进行有效地开发与应用。

    In the field of remote sensing applications, vegetation indices(VI) have been developed for qualitatively and quantitatively evaluating vegetative covers using spectral measurements. The spectral response of vegetated areas presents a complex mixture of vegetation, soil brightness, environmental effects,shadow, soil color and moisture. Moreover, the VI is affected by spatial-temporal variations of the atmosphere. Overforty vegetaion indices have been developed during the past two decades in order to enhance vegetation response and minimize the effects of the factors described above. Most of the vegetation indices were summarized, discussed, analysed about their applicability and limitations, and simply classificated. Vegetation indices are quantitative measurements indicating the vigor of vegetation. They show better sensitivity than individual spectral bands for green vegetation detection. Their usefulness lies as an aid to remote sensing image interpretation, the detection of land use changes, the evaluation of vegetative cover density, forestry, crop discrimination and crop prediction.
    In general, it can be observed that vegetation indices do not have a standard universal value, research having ofen shown different results. The atmosphere, sensor calibration, sensor viewing conditions, solar illumination geometry, soil moisture, color and brightness seriously affect vegetaion indices. Moreover, in a heterogeneous environment, where there is a mixture of vegetation and other ground elements in the pixels, the study of vegetation indices becomes more complex. However, the choice of a vegetation index as opposed to another, for what ever application, is quit delicate to make. Each environment has its own characteristics and each index is an indicator of green vegetation in its own right. As hyperspectral remote sensing technology (such as AVIRIS) and thermal infrared multi-spectral remote sensing technology (such as ASTER) goes on, many VI will be developed.

中图分类号: 

[1] Baret F, Guyot G, Major D J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Proceeings of the 12th Canadian Symposium on Remote Sensing. Vancouver, Canada, 1989. 1 355-1 358.
[2] Miller J R. Quantitative characterizition of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model.International Journal of Remote Sensing, 1990, 11(10):1 755-1 773.
[3] Gamon J A. A narrow-waveband spectral index that tracks diurnal changes in photosynt hetic efficiency. Remote Sensing of Envrionment, 1992, 41: 35-44.
[4] Kauth R J, Thomas G S. The tasselled cap-a graphic description of the spectra-temporal development of agriculture crops as seen by Landsat. Pros Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West Lafayette,Indiana, 1976. 41-51.
[5] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1 541-1 552.
[6] Jackson R D. Spectral indices in n-space. Remote Sensing of Environment, 1983, 13: 409-421.
[7] Huete A R. A soil-adjusted vegetaion index(SAVI). Remote Sensing of Environment, 1988, 25: 295-309.
[8] Major D J. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 1990, 11(5): 727-740.
[9] Escadafal R. Remote sensing of arid soil surface color with Landsat Thematic Mapper. Adv Space Res, 1989, 9(1): 1159-1163.
[10] Kaufman Y J. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2): 261-270.
[11] Baret F. Contribution au suivi radiometrique de cultures de cereales. These de Doctorat, Universite Paris-Sud Orsay,France, 1986. 182.
[12] Plummer S E, North P R, Briggs S A. The angular vegetation index: an atmospherically resistance index for the second along track scanning radiometer(ATSR-2). Proceedings of the Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing. Vald. Isere, France, 1994.
[13] Jackson R D. Spectral response of architecturally different wheat canopies. Remote Sensing of Environment, 1986, 20: 43-56.
[14] Qi J, Huete A R. Interpretaion of vegetation indices derived from multi-temporal SPOT images. Remote Sensing of Environment, 1993, 44: 89-101.

[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[4] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[5] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[6] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[7] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[8] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[9] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[10] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[13] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[14] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[15] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
阅读次数
全文


摘要