Please wait a minute...
img img
高级检索
地球科学进展  1998, Vol. 13 Issue (4): 327-333    DOI: 10.11867/j.issn.1001-8166.1998.04.0327
干旱气候变化与可持续发展     
植被指数研究进展
田庆久1,闵祥军2
1.中国科学院遥感应用研究所 北京 100101;2.北京师范大学资源与环境系 北京 100875
ADVANCES IN STUDY ON VEGETATION INDICES
Tian Qingjiu1,Min Xiangjun2
1.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101;2.Department of Resource & Environment Science, Beijing Normal University, Beijing 100875
 全文: PDF(234 KB)  
摘要:

在遥感应用领域,植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由于植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度复杂混合反应,而且受大气空间—时相变化的影响,因此植被指数没有一个普遍的值,其研究经常表明不同的结果。20多年来,已研究发展了40多个植被指数。该文对已有的大部分植被指数进行了归纳分类,评价其各自优势和局限性,并探讨了未来研究的方向,这将有助于遥感在农业、植被和生态环境监测方面进行有效地开发与应用。

关键词: 遥感植被指数土壤大气影响    
Abstract:

    In the field of remote sensing applications, vegetation indices(VI) have been developed for qualitatively and quantitatively evaluating vegetative covers using spectral measurements. The spectral response of vegetated areas presents a complex mixture of vegetation, soil brightness, environmental effects,shadow, soil color and moisture. Moreover, the VI is affected by spatial-temporal variations of the atmosphere. Overforty vegetaion indices have been developed during the past two decades in order to enhance vegetation response and minimize the effects of the factors described above. Most of the vegetation indices were summarized, discussed, analysed about their applicability and limitations, and simply classificated. Vegetation indices are quantitative measurements indicating the vigor of vegetation. They show better sensitivity than individual spectral bands for green vegetation detection. Their usefulness lies as an aid to remote sensing image interpretation, the detection of land use changes, the evaluation of vegetative cover density, forestry, crop discrimination and crop prediction.
    In general, it can be observed that vegetation indices do not have a standard universal value, research having ofen shown different results. The atmosphere, sensor calibration, sensor viewing conditions, solar illumination geometry, soil moisture, color and brightness seriously affect vegetaion indices. Moreover, in a heterogeneous environment, where there is a mixture of vegetation and other ground elements in the pixels, the study of vegetation indices becomes more complex. However, the choice of a vegetation index as opposed to another, for what ever application, is quit delicate to make. Each environment has its own characteristics and each index is an indicator of green vegetation in its own right. As hyperspectral remote sensing technology (such as AVIRIS) and thermal infrared multi-spectral remote sensing technology (such as ASTER) goes on, many VI will be developed.

Key words: Remote sensing    Vegetation index    Soil    Atmospheric effect.
收稿日期: 1997-10-20 出版日期: 1998-08-01
:  TP701  
通讯作者: 田庆久   
作者简介: 田庆久,男,1964年5月出生, 副研究员, 主要从事超光谱遥感及遥感信息定量化研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

田庆久,闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4): 327-333.

Tian Qingjiu,Min Xiangjun. ADVANCES IN STUDY ON VEGETATION INDICES. Advances in Earth Science, 1998, 13(4): 327-333.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1998.04.0327        http://www.adearth.ac.cn/CN/Y1998/V13/I4/327

[1] Baret F, Guyot G, Major D J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Proceeings of the 12th Canadian Symposium on Remote Sensing. Vancouver, Canada, 1989. 1 355-1 358.
[2] Miller J R. Quantitative characterizition of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model.International Journal of Remote Sensing, 1990, 11(10):1 755-1 773.
[3] Gamon J A. A narrow-waveband spectral index that tracks diurnal changes in photosynt hetic efficiency. Remote Sensing of Envrionment, 1992, 41: 35-44.
[4] Kauth R J, Thomas G S. The tasselled cap-a graphic description of the spectra-temporal development of agriculture crops as seen by Landsat. Pros Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West Lafayette,Indiana, 1976. 41-51.
[5] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1 541-1 552.
[6] Jackson R D. Spectral indices in n-space. Remote Sensing of Environment, 1983, 13: 409-421.
[7] Huete A R. A soil-adjusted vegetaion index(SAVI). Remote Sensing of Environment, 1988, 25: 295-309.
[8] Major D J. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 1990, 11(5): 727-740.
[9] Escadafal R. Remote sensing of arid soil surface color with Landsat Thematic Mapper. Adv Space Res, 1989, 9(1): 1159-1163.
[10] Kaufman Y J. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2): 261-270.
[11] Baret F. Contribution au suivi radiometrique de cultures de cereales. These de Doctorat, Universite Paris-Sud Orsay,France, 1986. 182.
[12] Plummer S E, North P R, Briggs S A. The angular vegetation index: an atmospherically resistance index for the second along track scanning radiometer(ATSR-2). Proceedings of the Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing. Vald. Isere, France, 1994.
[13] Jackson R D. Spectral response of architecturally different wheat canopies. Remote Sensing of Environment, 1986, 20: 43-56.
[14] Qi J, Huete A R. Interpretaion of vegetation indices derived from multi-temporal SPOT images. Remote Sensing of Environment, 1993, 44: 89-101.

[1] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[2] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川MS8.0地震破裂带土壤气中H2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[3] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[4] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[5] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[6] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[7] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[8] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[9] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[10] 李勇, 赵应权, 姚洁. 水泥粉尘对工业区土壤磁学性质影响及其环境意义[J]. 地球科学进展, 2016, 31(8): 829-839.
[11] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[12] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[13] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[14] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[15] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.