地球科学进展 ›› 1998, Vol. 13 ›› Issue (4): 334 -343. doi: 10.11867/j.issn.1001-8166.1998.04.0334

干旱气候变化与可持续发展 上一篇    下一篇

大洋温盐环流的稳定性及变率模拟研究进展
周天军 1,王绍武 1,张学洪 2   
  1. 1.北京大学地球物理系 北京 100871;2.中国科学院大气物理研究所 北京 100080
  • 收稿日期:1997-08-14 修回日期:1997-09-29 出版日期:1998-08-01
  • 通讯作者: 周天军
  • 基金资助:

    国家自然科学基金项目"20世纪中国与全球气候变率研究"(项目编号:49635190)资助。

PROCEEDING OF MODELLING STUDIES ON THE STABILITY AND VARIABILITY OF THE THERMOHALINE CIRCULATION

Zhou Tianjun 1,Wang Shaowu 1,Zhang Xuehong 2   

  1. 1.Department of Geophysics, Peking University, Beijing 100871;2.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080
  • Received:1997-08-14 Revised:1997-09-29 Online:1998-08-01 Published:1998-08-01

围绕大洋温盐环流的稳定性和变率,以三维原始方程大洋环流模式(OGCM)和海气耦合模式为重点,兼顾理想概念模式,总结了近年来模拟研究的主要成果。概括了几个主要前沿方向——大洋温盐环流的多平衡态现象、数十年/年代际变率以及百年到千年尺度的变率特性等的研究成果,探讨了其内部机制。

In this paper, some recent contributions of both primitive equation ocean circulation models(OGCM) and idealized conceptual models to the understanding of the stability and variability properties of the ocean thermohaline circulation are reviewed. The typical results of a hierarchy of models have been represented in brevity. Emphasis has been put on the multiple steady states and variability from decadal/interdecadal timescale to centennial and millennial timescale of the world ocean thermohaline circulation.

中图分类号: 

[1] Stommel H. Thermohaline convection with two stable regimes of flow. Tellus, 1961, 13, 224-230.
[2] Welander P. A simple heat-salt oscillator.Dyn of Atmos and Oceans, 1982, 6: 233-242.
[3] Welander P. Thermohaline effects in the ocean circulation and related simple models. In: Willebrand J, Anderson D L T, eds. Large-Scale Transport Processes in Oceans and Atmosphere.D Reidel Publishing, 1986.163-200.
[4] Marotzke J, Willebrand J. Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography,1991, 21: 1 372-1 385.
[5] Nakamura M, Stone P H, Marotzke J. Destabilization of the thermohaline circulation by atmospheric eddy transports. J Climate, 1994, 7:1 870-1 882.
[6] Birchfield G E.A coupled ocean-atmosphere climate model:temperature versus salinity effects on the thermohaline circulation. Clim Dyn,1989,4: 57-71.
[7] Birchfield G E, Wang H, Wyant W. A bimodal climate response controlled by water transport in a coupled ocean-atmosphere box model. Paleoceanogr, 1990, 5: 383-395
[8] Marotzke J, Welander P, Willebrand J. Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus, 1988, 40A: 162- 172.
[9] Stocker T F, Wright D G. Rapid transition of the ocean's deep circulation induced by changes in surface water flux. Nature, 1991, 351: 729-732.
[10] Wright D G, Stocker T F. Sensitivities of a zonally averaged global ocean circulation model. J Geophys Res, 1992, 97: 12 707-12 730.
[11] Fichefet T, Hovine S, Duplessy J C. A model study of the Atlantic circulationn during the last glacial maximum. Nature,1994, 372: 252-255.
[12] Bryan K. A numerical method for the study of of the circulation of the world ocean.Journal of Computational Physics,1969, 4: 347-376.
[13] Bryan K. Climate and the ocean circulation: III. The ocean model, Monthly Weather Review, 1969, 97(11): 806- 827.
[14] Cox M D. An idealized model of the world ocean. Part I: The global-scale water masses, Journal of Physical Oceanography, 1989, 19:1 730-1 753.
[15] Killworth P D, Stainforth D, Webb D J, et al. The development of a free-surface Bryan-Cox-Semtner ocean model. Journal of Physical Oceanography, 1991, 21: 1 333-1 348.
[16] Maier-Reimer E, Mikolajewicz U. Experiments with an OGCM on the cause of the Younger Dryas. Oceanography, UNAM press, 1989. 87-100.
[17] Maier-Reimer E, Mikolajewicz U, Hasselmann K. Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. Journal of Physical Oceanography, 1993, 23: 731-757.
[18] Zhang X H, Chen K M, Jin X Z, et al. Simulation of the thermohaline circulation with a twenty-layer oceanic general circulation model. Theoretical and Applied Climatology, 1996, 55(1-4): 65- 87.
[19] Zhang S, Greatbatch R J, Lin C A. A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. Journal of Physical Oceanography, 1993, 23: 287-299.
[20] England M H. Representing the global scale water masses in Ocean Circulation models. Journal of Physical Oceanography,1993, 23:1 523-1 552.
[21] Weaver A J, Hughes T M C. On the incompatibility of ocean and atmosphere models and the need for flux adjustments.Climate Dynamics, 1996, 12: 141-170.
[22] Bryan F. High-latitude salinity effects and interhemispheric thermohaline circulation. Nature, 1986, 323(25): 301- 304.
[23] Marotzke J, Willebrand J. Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography,1991, 21: 1 372-1 385.
[24] Hughes T M C, Weaver A J. Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 1993, 24:619-637.
[25] Power S B, R Kleeman. Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography,1993, 23: 1 670-1 681.
[26] Tziperman E, Toggweiler J R, Feliks Y. Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models. Journal of Physical Oceanography, 1994, 24: 217- 232.
[27] Cai W. Global present-day ocean climate and its stability under various surface thermohaline forcing conditions derived from Levitus climatology. Progress in Oceanography, 1995, 36: 219-247.
[28] Rahmstorf S. Rapid climate transition in a coupled ocean-atmosphere model. Nature, 1994, 372: 82-85.
[29] Rahmstorf S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature,1995, 378: 145-149.
[30] Manabe S, Souffer R J. Two stable equilibra of a coupled Ocean-Atmosphere model. Journal of Climate, 1988, 1: 841-866.
[31] Manabe S, Stouffer R J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 1995, 378: 165-167.
[32] Mysak L A, Stocker T F, Huang F. Century-scale variability in a randomly forced two dimensional thermohaline ocean circulation model. Climate Dynamics, 1993, 8: 103-116.
[33] Weaver A J, Marotzke J, Cummins P F. Stability and Variability of the Thermohaline Circulation. Journal of Physical Oceanography, 1993, 23:39-60.
[34] Power S B, Kleeman R. Surface heat flux parameterization and the response of ocean general circulation models to high-latitude freshing. Tellus, 1994, 46A: 86-95.
[35] Power S B, Moore A, Post D A. Stability of NADW formation in a global ocean general circulation model. Journal of Physical Oceanography, 1994, 24: 904-916.
[36] Mikolajewicz U, Maier-Reimer E. Internal secular variability in an ocean general circulation model. Climate Dynamics,1990, 4:145- 156.
[37] Weaver A J, Marotzke J, Cummins P F, et al. Stability and Variability of the Thermohaline Circulation. Journal of Physical Oceanography, 1993,23: 39-60.
[38] Weaver A J, Sarachik E S. Evidence for decadal variability in an ocean general circulation model: An advective mechanism.Atmosphere-Ocean, 1991,29: 197-231.
[39] Weaver A J, Sarachik E S, Marotzke J. Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature,1991, 353. 31: 836-838.
[40] Weaver A J, Aura S M, Myers P G. Interdecadal variability in a coarse resolution North Atlantic model. Journal of Geophysical Research, 1994, 99:12 423-12 441.
[41] Moore A M, Reason C J C. The response of a global ocean general circulation model to climatological surface boundary conditions for temperature and salinity. Journal of Physical Oceanography, 1993, 23: 300-328.
[42] Weisse R, Mikolajewicz U, Maier-Reimer E. Decadal variability of the North Atlantic in an ocean general circulation model. Journal of Geophysical Research, 1994, 99: 12 411-12 421.
[43] Chen F Ghil M. Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. Journal of Physical Oceanography, 1995, 25: 2 547-2 568.
[44] Delworth T, Manabe S, Stouffer R J. Interdecadal Variations of the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model. Journal of Climate, 1993, 6(11): 1 993-2 011.
[45] Stouffer R J, Manabe S, Vinniko K Y. Model assessment of the role of natural variability in recent global warming. Nature,1994, 367: 634-636.
[46] Manabe S, Stouffer R J. Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere-ocean-land surface model. Journal of Climate, 1996, 9: 376-393.

[1] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[2] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[3] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[4] 姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.
[5] 李耀辉,孙国武,张良,段海霞. 我国北方沙尘暴年代际变化与北大西洋海气系统年代际变率的联系[J]. 地球科学进展, 2011, 26(6): 624-630.
[6] 刘宇,管玉平,林一骅. 大洋热盐环流研究的一个焦点:北太平洋是否有深水形成[J]. 地球科学进展, 2006, 21(11): 1185-1192.
[7] 江志红,屠其璞. 国外有关海气系统年代际变率的机制研究[J]. 地球科学进展, 2001, 16(4): 569-573.
[8] 龚道溢,周天军,王绍武. 北大西洋涛动变率研究进展[J]. 地球科学进展, 2001, 16(3): 413-420.
[9] 周天军,王绍武,张学洪. 大洋温盐环流与气候变率的关系研究:科学界的一个新课题[J]. 地球科学进展, 2000, 15(6): 654-660.
[10] 江志红, 屠其璞, 施 能. 年代际气候低频变率诊断研究进展[J]. 地球科学进展, 2000, 15(3): 342-347.
阅读次数
全文


摘要