地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 236 -244. doi: 10.11867/j.issn.1001-8166.2003.02.0236

研究论文 上一篇    下一篇

深层气理论分析和深层气潜势研究
史斗 1,刘文汇 2,郑军卫 1   
  1. 1.中国科学院资源环境科学信息中心,甘肃 兰州 730000;2.中国科学院兰州地质研究所气体地球化学国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2002-08-23 修回日期:2002-10-14 出版日期:2003-04-10
  • 通讯作者: 史斗 E-mail:geogas@ns.lzb.ac.cn
  • 基金资助:

    中国科学院知识创新项目“中国西北深层气与未熟—低熟烃研究”(编号:KZCX2-111)资助.

THEORY ANALYSIS ON DEEP SEATED GAS AND ITS POTENTIAL STUDY

Shi Dou 1, Liu Wenhui 2, Zheng Junwei 1   

  1. 1.The Scientific Information Center for Resources and Environment, CAS, Lanzhou 730000, China;2.State Key Laboratory of Gas Geochemistry, Lanzhou Institute of Geology, CAS, Lanzhou 730000, China
  • Received:2002-08-23 Revised:2002-10-14 Online:2003-04-10 Published:2003-04-01

近年来的一些文献表述深层气时在"深层"和"深部"名词概念上容易造成不必要的费解。就沉积层而言,宜将生油主带(生油窗)作为"深"的界限,从此界限开始到基底以上地层范围的天然气统统称为"深层气";就整个地球而言,宜将沉积层结晶基底和该基底以下的天然气统统称为"深部气"。当然,还应更多地注意来源于深部"深生浅储"的"深层气"。深层气的形成与地壳烃类形成的垂直分带性有关。在一定的历史时期和一定的沉积盆地油气形成分带性理论对勘探实践发挥了一定的指导作用,随着油气地质科研和勘探实践的发展,人们逐渐发现了油气形成分带性理论中油相消失和气相生成带开始门限指标的局限性。不同盆地有不同深度的生油主带,因而也有不同深度范围生气主带(干气带)。腐泥型有机质的演化需要更高的活化能,而需更高的温度和更大的深度,其生气主带深于腐殖型有机质源岩层的位置。生气主带有机质演化受多种因素控制,其中温度、深度和时间是重要因素,引起深层温度升高的条件有地球动力和深部热流等。古生界以前的重大生物地质事件为深层气形成准备了有机质及其演化条件,从物质基础上讲,深层气有巨大的资源潜势。油气形成的地球动力学观点及其他新观点为研究深层气提供了新的思路,岩石圈的烃类资源远未枯竭,被发现和开采的资源仅是其中的一部分,更多的需在深部去发掘。

In recent years, the concept of deep seated gas was commonly mixed up with deep gas in some published articles. In sedimentary, it is better to make the main oil and gas generating zone (oil generating window) as the limit of hydrocarbon generating depth, and the gas that seated in the strata between the depth and sedimentary basement should be named deep seated gas. But to the earth, it is better to name the gas that seated in and under sedimentary crystalline basement as deep gas. Of course, the gas that generated in deeper strata but reserved in shallower strata should also be a important kind of deep seated gas. The generation of deep seated gas relate to the vertical zonation of hydrocarbon generation in earth crust. The theory of oil and gas generating zonation for sedimentary basin have effect on exploration practice in some historical period or in some basins. But with the development of oil and gas geology theory study and exploration practice, the limit of threshold indicate that was made for oil phase disappearing and gas phase appearing in the theory of oil and gas generating zonation was find by scientists. Different basin has different depth for main oil generating zone, so for main gas generating zone (dry gas zone). The sapropel-type organic matter evolution need higher temperature and biger depth and its main gas generating zone is deeper than humic-type organic matter's. Evolution of organic matter in main gas generating zone is controlled bymany different factors, including some important factors, such as temperature, depth and time. The causes that lead temperature higher are earth dynamics, heatflux in earth deep, and so on. The important geological events taken place before Paleozoic have prepared abundant organic matter and evolution condition for deep seated gas generating. So taken from matter base, there have  a great resource potential for deep seated gas. Earth dynamics for oil and gas generating and other new idea offer a new way for deep seated gas study. The resources of hydrocarbon in lithosphere are not used up, but also all resources that have been proved and mined are only a small part of the whole. The main of hydrocarbon resources may be explored in the deep.

中图分类号: 

[1] MielienievskiJ V N. About deep zonation of oil/gas formation[J].Exploration and Protection Minerals,1999,11:42-43.

[2] Gold T S. The deep-earth-gas hypothesis[J]. Scientific American,1980,242(6):154.

[3] Samvielov R G. The characteristic and distribution for generation of deep oil and gas reservoir [J]. Oil and Gas Geology,1995,9:1-11.

[4] Lodzhienvskaia M I. Presence of oil and gas in depth-submersion seat[J]. Shi Dou translated. Natural Gas Geoscience,2001,12(4/5):48-51.[Lodzhienvskaia M I.深埋层的含油气性[J].史斗译.天然气地球科学, 2001, 12(4/5):48-51.]

[5] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M].Berlin: Springer-Verlag,1984.

[6] Xu Yongchang, et al. Theory of Natural Gas Generation and its Application[M]. Beijing: Science Press,1994:38-41. [徐永昌等著. 天然气成因理论及应用[M]. 北京:科学出版社,1994:38-41.]

[7] Kang Zhulin. Exploration potential of deep-seated oil/gas in the Bohai bay Zasin[J]. Petroleum Exploration and Development,1996,236:20-22.[ 康竹林. 渤海湾盆地深层油气勘探前景[J]. 石油勘探与开发,1996,236:20-22.]

[8] Bielokon T V. Growth distinction anomaly high seam pressure in depths[J].Shi Dou translated. Natural Gas Geoscience,1999,10(6):32-37.[Bielokon T V 深部含油气性问题[J].史斗译.天然气地球科学,1999,106:32-37.]

[9] Zhao MengJun, Zhou Xingxi, Lu Shuangfang. Tarim basin is rich in natural gas [J]. Natural Gas Industry, 1999,192:13-18. [赵孟军,周兴熙,卢双舫. 塔里木盆地——富含天然气的盆地[J].天然气工业,1999,192:13-18.]

[10] Jia Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim basin[J]. XinJiang Petroleum Geology,1999,20(3):180-182.[贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质,1999,203:180-182. ]

[11] Liu Shuyi. Deep-seated Oil/Gas Reservoirs and Faces Distribution[M]. Beijing: Petroleum Industry Publishing House,1992. [刘淑宜. 深层油气藏储集层与相态分布[M]. 北京:石油工业出版社,1992.]

[12] Price L C. Organic geochemistry of the 9.6 km, Bertha №.1 well, Oklahoma[J]. Organic Geochemistry, 1981,(3):57-59.

[13] Price L C. Thermal stability of core samples from an ultradeep hot well(300,7km) [J].Chemical Geology ,1982,(37):215-228.

[14] Miekhatiev P G. Geologic temperature condition of presence of oil and gas in deep bedding seats [J].Shi Dou translated. Natural Gas Geoscience,2001,124/5:56-60.[Miekhatiev P G 深埋层含油性的地湿前提条件[J].史斗译.天然气地球科学,2001,124/5:56-60.]

[15] Ieriemienko N A. The potential for deep oil and gas reservoir[J].Oil and Gas Geology,1998,6:6-11.

[16] Gavrilov V P. Earth dynamic model for oil/gas formation and its theory and practice significance[J]. Shi Dou translated. Natural Gas Geoscience,2002,133/4:19-28.[Gavyilov V P.油气形成的地球动力学模式及其理论和实践意义[J].史斗译. 天然气地球科学,2002,133/4:19-28.]

[17] Shi Dou, Liu Wenhui. The tectonic-dynamic theory for hydrocarbon formation and earth dynamic technology for oil/gas deposit exploration[J]. Advances in Earth Sciences,1996,11(5):461-468.[史斗,刘文汇. 油气形成的构造动力学理论和油气藏勘探的地球动力学方法综述[J]. 地球科学进展,1996,115:461-468.]

[18] Mango F D. Transition metal catalysis in the generation of petroleum and natural gas[J]. Geochimica et Consmochimica Acta,1992,56:553-555.

[19] McNeil R I. Thermal stasility of hydrocarbons: Labortary criteria and field examples[J]. Energy & Fuels,1996,10:60-67.

[20] Price L C, Wenger L M. The influence of pressure on petroleum and maturation series as suggested by aqueous pyrolysis[J]. Organic Geochemistry,1992,19:141-159.

[21] Liu Xiaoping, Wu Xinsong, Wang Zhizhang, et al. Principal type and distribution of the gas reservoirs in the large- and medium-sized fields in China[J]. Natural Gas Industry,2002,22(1):1-5. [刘小平,吴欣松,王志章,. 我国大中型气田主要类型与分布[J]. 天然气工业,2002,221:1-5.]

[22] Dai Jinxing, Wang Tingbin, Song Yan, et al. Formation and Distribution of the Natural Gas Reservoirs in the Large and Medium-sized Fields in China[M]. Beijing : Geology Publishing House,1997.1-4,24. [戴金星,王庭斌,宋岩,. 中国大中型天然气田形成条件与分布规律[M]. 北京:地质出版社,1997.1-4,24.]

[23] Niervchiev S G. The main biological and geologic events and its cycles in Phanerozoic[J].Shi Dou translated. Natural Gas Geoscience,2001,12(4/5):1-19.[Niervchiev S G.显生宙重大地质和生物事件及其周期性[J]. 史斗译.天然气地球科学,2001,12(4/5):1-19.]

[1] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[2] 张英杰,王龙. 显生宙一级层序的银河年旋回响应:重要的进展与争论[J]. 地球科学进展, 2020, 35(3): 275-285.
[3] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.
[4] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[5] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[6] 黄云飞, 童金南. 古-中生代之交双壳类演变研究进展[J]. 地球科学进展, 2014, 29(8): 922-933.
[7] 沈文杰,张华,孙永革,林杨挺,梁婷,杨志军,周永章. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6): 613-623.
[8] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[9] 沈文杰,林杨挺,王道德,周永章,缪秉魁. 天然富勒烯及其在P-T界线地层的研究进展[J]. 地球科学进展, 2006, 21(9): 903-910.
[10] 张华. 撞击地层学及其研究进展[J]. 地球科学进展, 2005, 20(9): 961-969.
[11] 童金南;王德珲. 三叠纪年代地层与生物复苏[J]. 地球科学进展, 2005, 20(12): 1321-1326.
[12] 郑军卫;刘文汇;史斗. 塔里木盆地深层气勘探潜势[J]. 地球科学进展, 2004, 19(5): 802-807.
[13] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[14] 赵振华,刘秉光,李朝阳. 我国与寻找超大型矿床有关的基础研究进展[J]. 地球科学进展, 2001, 16(2): 184-188.
[15] 王强,许继锋,赵振华. 一种新的火成岩——埃达克岩的研究综述[J]. 地球科学进展, 2001, 16(2): 201-208.
阅读次数
全文


摘要