地球科学进展 ›› 2019, Vol. 34 ›› Issue (8): 787 -800. doi: 10.11867/j.issn.1001-8166.2019.08.0787

综述与评述 上一篇    下一篇

输沙率对土壤颗粒特性和气流湍流脉动的响应
邹学勇 1, 2( ),张梦翠 1,张春来 1, 2,程宏 1, 2,李慧茹 1,张峰 1, 2   
  1. 1. 北京师范大学 地理科学学部,北京 100875
    2. 北京师范大学 防沙治沙教育部工程研究中心,北京 100875
  • 收稿日期:2019-07-08 修回日期:2019-07-28 出版日期:2019-08-10
  • 基金资助:
    国家自然科学基金面上项目“输沙率对土壤颗粒特性;气流湍流脉动的响应”(41871002);国家自然科学基金重点项目“土壤风蚀速率对影响因子动态变化的响应”(41630747)

Response of Aeolian Flux to Soil Particle Properties and Airflow Turbulence Fluctuation

Xueyong Zou 1, 2( ),Mengcui Zhang 1,Chunlai Zhang 1, 2,Hong Cheng 1, 2,Huiru Li 1,Feng Zhang 1, 2   

  1. 1. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2. MOE Engineering Research Center of Desertification and Blown-Sand Control, Beijing Normal University, Beijing 100875, China
  • Received:2019-07-08 Revised:2019-07-28 Online:2019-08-10 Published:2019-10-11
  • About author:Zou Xueyong(1964-), male, Liu’an City, Anhui Province, Professor. Research areas include blown sand physics and desertification control. E-mail: zouxy@bnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Response of aeolian transport rate to soil particle properties and airflow turbulence fluctuation" (No. 41871002) and "Response of soil wind erosion rate to the dynamic influencing factors"(41630747)

自然界的输沙过程通常因气流湍流脉动而呈现不稳定状态,风和输沙率的各个物理量具有很强的脉动特性,甚至间歇性。经典的稳态输沙率方程没有考虑土壤颗粒特性和气流湍流特征等物理量,已经不能准确预测湍流风驱动的输沙过程。通过对稳态输沙率方程中包含的变量及其对输沙率的影响、土壤颗粒特性和气流湍流脉动对非稳态输沙过程的影响,以及非稳态输沙过程对气流湍流脉动的延时响应等方面的深入分析,对稳态输沙与非稳态输沙进行了界定,提出了非稳态输沙率方程的构建原则和包含的变量,以及建立非稳态输沙率方程的途径。最后,对建立非稳态输沙率方程过程中可预见的关键问题进行了探讨。

The process of aeolian flux in wild areas is usually unstable due to turbulent fluctuation of airflow. The physical parameters of wind and aeolian flux have strong pulsation characteristics and are even intermittent. Since the classical aeolian flux equations derived from steady sediment transport processes do not take into account the physical parameters such as soil particle properties and airflow turbulence characteristics, they cannot accurately predict the process of sediment transport driven by turbulent wind. Based on the analysis of the variables contained in the classical aeolian flux equations and their effects on the aeolian flux, the soil particle properties and the airflow turbulent fluctuation which influence unsteady sediment transport process, and the delayed response of the unsteady sediment transport process to airflow turbulent fluctuation, then the steady and unsteady sediment transports were defined. Strictly, there is no steady sediment transport process in nature, but the sediment transport process in a short period of time can be roughly considered to be a steady sediment transport process as the fluctuation of sediment transport is very little. Thus, the unsteady sediment transport process in a long-term series can be regarded as series of steady sediment transport processes on an "appropriate time scale" (Δt). The construction principles, variables in unsteady aeolian flux equation, and establishing unsteady aeolian flux equation of the way which is the method of determining each variable by controlling the conditional experiments were put forward. Finally, the foreseeable key issues in the process of establishing the unsteady aeolian flux equation were discussed.

中图分类号: 

1 Bagnold R A . The Physics of Blown Sand and Desert Dunes [M]. London: Methuen, 1941: 64-70.
2 Kawamura R . Study on sand movement by wind [J]. Report, Institute Science & Technology University, 1951, 5(3): 95-112.
3 Lettau K , Lettau H . Experimental and micrometeorological field studies of dune migration[M] //Lettau K , Lettau H ,eds . Exploring the World’s Driest Climate. Center for Climatic Research, University of Wisconsin-Madison, 1978:110-147.
4 Sauermann G , Kroy K , Herrmann H J . Continuum saltation model for sand dunes [J]. Physical Review E, 2001, 64 (031305).DOI: 10.1103/PhysRevE.64.031305 .
doi: 10.1103/PhysRevE.64.031305    
5 Andreotti B . A two-species model of aeolian sand transport [J]. Journal of Fluid Mechanics, 2004, 510: 47-70.
6 Durán O , Herrmann H . Modelling of saturated sand flux [J]. Journal of Statistical Mechanics: Theory and Experiment, 2006, (7): P07011.DOI:10.1088/1742-5468/2006/07/P07011 .
doi: 10.1088/1742-5468/2006/07/P07011    
7 Martin R L , Kok J F . Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress [J]. Science Advances, 2017, 3 (6): e1602569. DOI: 10.1126/sciadv.1602569 .
doi: 10.1126/sciadv.1602569    
8 Namikas S L , Sherman D J . AEOLUS II: An interactive program for the simulation of aeolian sedimentation [J]. Geomorphology, 1998, 22 (2): 135-149.
9 Raffaele L , Bruno L , Wiggs G F S . Uncertainty propagation in aeolian processes: From threshold shear velocity to sand transport rate [J]. Geomorphology, 2018, 301: 28-38.
10 Martin R L , Barchyn T E , Hugenholtz C H , et al . Timescale dependence of aeolian sand flux observations under atmospheric turbulence [J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 9 078-9 092.
11 Gillette D A , Stockton P H . The effect of nonerodible particles on wind erosion of erodible surfaces [J]. Journal of Geophysical Research: Atmospheres, 1989, 94 (10): 12 885-12 893.
12 Xing M . The harmonious character in equilibrium aeolian transport on mixed sand bed [J]. Geomorphology, 2007, 86 (3/4): 230-242.
13 Free E E , Westgaste J M . The Control of Blowing Soils [R]. U.S.
Department of Agriculture, Farmers’ Bulletin No . 421, 1910:1-23.
14 Middeton H E . Properties of Soils Which Influence Erosion [R]. U.S. Department of Agriculture, Technical Bulletin No. 178, 1930: 1-15.
15 Lyles L , Krauss R K . Threshold velocities and initial particle motion as influenced by air turbulence [J]. Transactions of the American Society of Agricultural Engineers, 1971, 14(10): 563-566.
16 Logie M . Wind tunnel experiments on dune sands [J]. Earth Surface Processes and Landforms, 1981, 6: 365-374.
17 Horikawa K , Hotta S , Kubota S , et al . On the sand transport rate by wind on a beach [J]. Coastal Engineering in Japan, 1983, 26: 101-120.
18 McKenna N C , Nickling W G . A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind [J]. Canadian Journal of Soil Science, 1989, 69: 79-96.
19 Cornelis W M , Gabriels D . A simple model for the prediction of the deflation threshold shear velocity of dry loose particles [J]. Sedimentology, 2004, 51: 39-51.
20 Iversen J D , White B R . Saltation threshold on Earth, Mars and Venus [J]. Sedimentology, 1982, 29: 111-119.
21 Nickling W G . The initiation of particle movement by wind [J]. Sedimentology, 1988, 35 (3): 499-511.
22 Yue Gaowei , Huang Ning , Zheng Xiaojing . Effect of irregular sand grains and electrostatic force on threshold wind speed [J]. Journal of Desert Research, 2003, 23 (6): 621-627.
岳高伟, 黄宁, 郑晓静 . 沙粒形状的不规则性及静电力对起动风速的影响[J]. 中国沙漠,2003, 23 (6): 621-627.
23 Dietrich W E . Settling velocity of natural particles [J]. Water Resources Research, 1982, 18(6): 1 615-1 626.
24 Durán O , Claudin P , Andreotti B . On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws [J]. Aeolian Research, 2011, 3 (3): 243-270.
25 Kok J F , Parteli E J R , Michaels T I , et al . The physics of wind-blown sand and dust [J]. Reports on Progress in Physics, 2012, 75 (10): 106 901-106 973.
26 Farrell E , Sherman D . A new relationship between grain size and fall (settling) velocity in air [J]. Progress in Physical Geography, 2015, 39(3): 361-387.
27 Chepil W S . Equilibrium of soil grains at threshold of movement by wind [J]. Proceedings of Soil Science Society of America, 1959, 23: 422-428.
28 Butterfield G R . Grain transport rates in steady and unsteady turbulent airflows [J]. Acta Mechanica, 1991,(Suppl.l): 97-122.
29 Yang Bin , Wang Yuan , Liu Jiang , et al . High-frequency measurement of the sand phase's concentration in wind-sand flow [J]. Journal of Experiments in Fluid Mechanics, 2010, 24 (5): 47-50.
杨斌, 王元, 刘江,等 . 风沙流中沙粒相浓度的高频测量[J]. 实验流体力学,2010, 24 (5): 47-50.
30 Stout J E , Zobeck T M . Intermittent saltation [J]. Sedimentology, 1997, 44: 959-972.
31 Barchyn T E , Hugenholtz C H . Comparison of four methods to calculate aeolian sediment transport threshold from field data: Implications for transport prediction and discussion of method evolution [J]. Geomorphology, 2011, 129 (3/4): 190-203.
32 Mayaud J , Wiggs G , Bailey R . A new turbulence-based model for sand transport [C]//Geophysical Research Abstracts, EGU 2016, 18: 75.
33 Liu Jiang , Wang Yuan , Yang Bin . High-frequency measurements of the particle response to turbulence [J]. Journal of Xi’an Jiaotong University, 2010, 44 (11): 113-118.
刘江, 王元, 杨斌 . 高频测量输沙浓度对湍流脉动的频率响应[J]. 西安交通大学学报,2010, 44 (11): 113-118.
34 Sterk G , Jacobs A F G , Van Boxel J H . The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer [J]. Earth Surface Processes and Landforms, 1998, 23 (10): 877-887.
35 Wang Ping , Zheng Xiaojing . Development of unsteady windblown sand transport [J]. Advances in Earth Science, 2014, 29 (7): 786-794.
王萍, 郑晓静 . 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29 (7): 786-794.
36 Skidmore E L . Wind erosion climatic erosivity [J]. Climatic Change, 1986, 9: 195-208.
37 Zou X , Zhang C , Cheng H , et al . Cogitation on developing a dynamic model of soil wind erosion [J]. Science in China (Series D): 2015, 58 (3): 462-473.
38 Bagnold R A . The movement of desert sand[J]. Proceedings of the Royal Society of London: A, 1936,157 (892): 594-620.
39 Owen P R . Saltation of uniform grains in air [J]. Journal of Fluid Mechanics, 1964, 20 (2): 225-242.
40 Ling Yuquan , Wu Zheng . Experimention on the dynamic photography of the movement of sand-driving wand [J]. Acta Geographica Sinica, 1980, 35 (2): 174-181.
凌裕泉, 吴正 . 风沙运动的动态摄影实验[J]. 地理学报, 1980, 35 (2): 174-181.
41 Pye K , Tsoar H . Aeolian Sand and Sand Dunes [M]. Berlin: Springer-Verlag, 2009:99-140.
42 P?htz T , Kok J F , Herrmann H J . The apparent roughness of a sand surface blown by wind from an analytical model of saltation [J]. Physics, 2012, 14 (17):43035-43 077.
43 Shao Y . Physics and Modelling of Wind Erosion [M]. New York: Springer Publishing Company, 2008 :117-148.
44 Sherman D J , Li B , Ellis J T , et al . Recalibrating aeolian sand transport models [J]. Earth Surface Processes and Landforms, 2013, 38 (2):169-178.
45 Edwards B L , Namikas S L . Characterizing the sediment bed in terms of resistance to motion:Toward an improved model of saltation thresholds for aeolian transport[J]. Aeolian Research, 2015, 19: 123-128.
46 Yang X , He Q , Ali M , et al . A field experiment on dust emission by wind erosion in the Taklimakan Desert[J]. Acta Meteorologica Sinica, 2012, 26 (2): 241-249.
47 Williams G . Some aspects of the eolian saltation load [J]. Sedimentology, 1964, 3 (4): 257-287.
48 Willetts B B , Rice M A . Collisions in aeolian saltation [J]. Acta Mechanica, 1986, 63 (1/4): 255-265.
49 Ren Shan . Numerical Simulations of Wind-blown Sand Saltation with Consideration of Two Feedback Mechanisms [D]. Lanzhou: Lanzhou University, 2011:52-71.
任珊 . 两种反馈机制作用下风沙跃移运动的数值模拟[D]. 兰州: 兰州大学, 2011:52-71.
50 Zingg A W . Wind tunnel studies of the movement of sedimentary material [C]//Proceedings of the 5th Hydraulic Conference. Iowa City: Iowa Institute of Hydraulic, 1953: 111-135.
51 Sherman D J , Jackson D W T , Namikas S L , et al . Wind-blown sand on beaches: An evaluation of models [J]. Geomorphology, 1998, 22 (2): 113-133.
52 Sauermann G , Kroy K , Herrmann H J . Continuum saltation model for sand dunes [J]. Physical Review E, 2001, 64 (3): 031305. DOI: 10.1103/PhysRevE.64.031305 .
doi: 10.1103/PhysRevE.64.031305    
53 Ungar J E , Haff P K . Steady state saltation in air [J]. Sedimentology, 1987, 34 (2): 289-299.
54 Kok J F . An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis [J]. Geophysical Research Letters, 2010, 37:L12202. DOI: 10.1029/2010g l043646 .
doi: 10.1029/2010g l043646    
55 Kok J F . Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms [J]. Physical Review Letters, 2010, 104.074502. DOI: 10.1103/PhysRevLett.104.074502 .
doi: 10.1103/PhysRevLett.104.074502    
56 Ho T D , Valance A , Dupont P , et al . Scaling laws in aeolian sand transport [J]. Physical Review Letters, 2011. DOI: 10.1103/PhysRevLett.106.094501 .
doi: 10.1103/PhysRevLett.106.094501    
57 Namikas S L . Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach [J]. Sedimentology, 2003, 50 (2): 303-326.
58 Rasmussen K R , S?rensen M . Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling [J]. Journal of Geophysical Research: Earth Surface, 2008, 113:F02S12. DOI: 10.1029/2007JF000774 .
doi: 10.1029/2007JF000774    
59 Maegley W J . Saltation and Martian sandstorms [J]. Reviews of Geophysics, 1976, 14 (1): 135-142.
60 Iversen J D , Greeley R , White B , et al . The effect of vertical distortion in the modeling of sedimentation phenomena: Martian crater wake streaks [J]. Journal of Geophysical Research: Solid Earth and Planets, 1976, 81 (26): 4846-4856.
61 Kind R J . A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting [J]. Atmospheric Environment, 1976, 10 (3):219-227.
62 Dong Z , Liu X , Wang H , et al . Aeolian sand transport: A wind tunnel model [J]. Sedimentary Geology, 2003, 161(1/2): 71-83.
63 Hsu S A . Wind stress criteria in eolian sand transport [J]. Journal of Geophysical Research: Oceans and Atmospheres, 1971, 76 (36): 8684-8686.
64 Li Z , Feng D , Wu S , et al . Grain size and transport characteristics of non-uniform sand in aeolian saltation [J]. Geomorphology, 2008, 100 (3): 484-493.
65 Chepil W S . Dynamics of wind erosion: II. Initiation of soil movement [J]. Soil Science, 1945, 60: 397-411.
66 Li Jifeng . A Study on Shear Strength and Wind Erosion-antierodibility of Sieved Soil [D]. Beijing: Beijing Normal University, 2015:66-72.
李继峰 . 筛分土抗剪强度与风蚀抗蚀性实验研究[D]. 北京: 北京师范大学, 2015: 66-72.
67 White B R . Soil transport by winds on Mars [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9):4643-4651.
68 Grass A J . Structural features of turbulent flow over smooth and rough boundaries [J]. Journal of Fluid Mechanics, 1971, 50 (2): 233-255.
69 Logie M . Wind tunnel experiments on dune sands [J]. Earth Surface Processes & Landforms, 1981, 6 (3/4): 365-374.
70 Neuman C M . Effects of temperature and humidity upon the entrainment of sedimentary particles by wind [J]. Boundary-Layer Meteorology, 2003, 108 (1): 61-89.
71 Horikawa K , Hotta S , Kraus N C . Literature review of sand transport by wind on a dry sand surface [J]. Coastal Engineering, 1986, 9 (6): 503-526.
72 Chen Zhongyi , Zhou Jingxing , Wang Hongjin . Soil Mechanicis [M]. Beijing: Tsinghua University Press, 1994: 15.
陈仲颐, 周景星, 王洪瑾 . 土力学[M]. 北京: 清华大学出版社, 1994:15.
73 Blanco-Canqui H , Lal R , Post W M , et al . Organic carbon influences on soil particle density and rheological properties [J]. Soil Science Society of America, 2006, 70 (4): 1407-1414.
74 White B R , Schulz J C . Magnus effect in saltation [J]. Journal of Fluid Mechanics,1977, 81 (3): 497-512.
75 White B R . Two-phase measurements of saltating turbulent boundary layer flow [J]. International Journal of Multiphase Flow, 1982, 8 (5): 459-473.
76 Xie L , Ling Y , Zheng X . Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory [J]. Journal of Geophysical Research: Atmospheres, 2007, 112 (D12116). DOI: 10.1029/2006JD008254 .
doi: 10.1029/2006JD008254    
77 Zou X , Cheng H , Zhang C , et al . Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain [J]. Geomorphology, 2007, 90 (1/2): 11-22.
78 Huang N , Wang C , Pan X . Simulation of aeolian sand saltation with rotational motion [J]. Journal of Geophysical Research: Atmospheres, 2010, 115:D22211. DOI: 10.1029/2009JD013593 .
doi: 10.1029/2009JD013593    
79 Aidun C K , Ding E . Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state [J]. Physics of Fluids, 2003, 15 (6): 1612-1621.
80 Liu Yi , Nie Deming . Characteristic of the settling particles with different density [J]. Chinese Journal of Computational Mechanics, 2018, 35 (5): 650-655.
刘依, 聂德明 . 密度不同的颗粒在流体中的沉降特性[J]. 计算力学学报, 2018, 35 (5): 650-655.
81 MacCarthy G R . Eolian sands: A comparison [J]. American Journal of Ofence, 1935, 30 (176): 81-95.
82 MacCarthy G R , Huddle J W . Shape-sorting of sand grains by wind action [J]. American Journal of Science, 1938, (205): 64-73.
83 Mattox R B . Eolian shape-sorting [J]. Journal of Sedimentary Research, 1955, 25 (2): 111-114.
84 Winkelmolen A M . Rollability, a functional shape property of sand grains [J]. Journal of Sedimentary Research, 1971, 41 (3):703-714.
85 Rice M A . Grain shape effects on aeolian sediment transport [J]. Acta Mechanica, 1991, (Suppl.l): 159-166.
86 Li B , Neuman C M . Boundary-layer turbulence characteristics during aeolian saltation[J]. Geophysical Research Letters, 2012, 39:L11402. DOI: 10.1029/2012GL052234 .
doi: 10.1029/2012GL052234    
87 Wyngaard J C . Atmospheric turbulence [J]. Annual Review of Fluid Mechanics, 1992, 24: 205-234.
88 Christiansen E B , Barker D H . The effect of shape and density on the free settling of particles at high Reynolds numbers [J]. AIChE Journal, 1965, 11 (1): 145-151.
89 Iversen J D , Greeley R , Marshall J R , et al . Aeolian saltation threshold: The effect of density ratio [J]. Sedimentology, 1987, 34 (4): 699-706.
90 Wu Zheng . Geomorphology of Wind-drift Sands and Their Controlled Engineering [M]. Beijing: Science Press, 2010:201-208.
吴正 . 风沙地貌与治沙工程学 [M]. 北京: 科学出版社, 2010: 201-208.
91 Willetts B B , Rice M A , Swaine S E . Shape effects in aeolian grain transport [J]. Sedimentology, 1982, 29 (3): 409-417.
92 Loth E . Drag of non-spherical solid particles of regular and irregular shape [J]. Powder Technology, 2008, 182 (3): 342-353.
93 Wang Le . Study on the Wind Erosion Process of Non-uniform Sand Bed [D]. Shijiazhuang: Hebei Normal University, 2014:14-19.
王乐 . 非均匀沙床面风蚀过程研究[D]. 石家庄: 河北师范大学, 2014:14-19.
94 Li Zhenshan , Ni Jinren . Aeolian sand transport processes [J]. Journal of Arid Land Resources and Environment, 1998, 12 (3): 89-97.
李振山, 倪晋仁 . 风沙流研究的历史、现状及其趋势[J]. 干旱区资源与环, 1998, 12 (3): 89-97.
95 Cierco F X , Naaim M , Naaim-Bouve F . Experimental study of particle concentration ?uctuations in a turbulent steady flow[J]. Annals of Glaciology, 2008, 49: 121-126.
96 Shao Y . A similarity theory for saltation and application to aeolian mass flux [J]. Boundary-Layer Meteorology, 2005, 115 (2): 319-338.
97 Sch?nfeldt H J . Turbulence and Aeolian sand transport [C] // EGU General Assembly, 2008, 10: EGU2008-A-00193.
98 S?rensen M . On the rate of aeolian sand transport [J]. Geomorphology, 2004, 59 (1/4): 53-62.
99 Rasmussen K R , S?rensen M . Aeolian mass transport near the saltation threshold [J]. Earth Surface Processes and Landforms, 1999, 24 (5): 413-422.
100 Wang Ping , Zheng Xiaojing . Fluctuating of wind-blown sand flux in field wind condition [J]. Journal of Desert Research, 2013, 33 (6): 1 622-1 628.
王萍, 郑晓静 . 野外近地表风沙流脉动特征分析[J].中国沙漠, 2013, 33 (6): 1 622-1 628.
101 Zang K , Qu J , Zu R , et al . Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces [J]. Science in China (Series D), 2007, 50 (2): 247-253.
102 Xuan J . Turbulence factors for threshold velocity and emission rate of atmospheric mineral dust [J]. Atmospheric Environment, 2004, 38 (12): 1 777-1 783.
103 Sch?nfeldt H J , Von L?wis S . Turbulence-driven saltation in the atmospheric surface layer [J]. Meteorologische Zeitschrift, 2003, 12 (5): 257-268.
104 Leenders J K , van Boxel J H , Sterk G . Wind forces and related saltation transport [J]. Geomorphology, 2005, 71 (3/4): 357-372.
105 Butterfield G R . Transitional behavior of saltation: Wind tunnel observation of unsteady wind [J]. Journal of Arid Environments, 1998, 39: 377-394.
106 Spies P J , McEwan I K , Butterfield G R . One-dimensional transitional behaviour in saltation [J]. Earth Surface Processes and Landforms, 2000, 25 (5): 505-518.
107 Zheng X , Zhang J . Characteristics of near-surface turbulence during a dust storm passing Minqin on March 19, 2010 [J]. Chinese Science Bulletin, 2010, 55 (27/28): 3 107-3 112.
108 Mayaud J R , Bailey R M , Wiggs G F S , et al . Modelling aeolian sand transport using a dynamic mass balancing approach [J]. Geomorphology, 2017, 280: 108-121.
109 Stout J E . Effect of averaging time on the apparent threshold for aeolian transport [J]. Journal of Arid Environments, 1998, 39 (3): 395-401.
110 Butterfield R G . Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research [J]. Geomorphology, 1999, 29 (1/2): 31-58.
111 Valance A , Rasmussen K R , Moctar A O E , et al . The physics of Aeolian sand transport [J]. Comptes Rendus Physique, 2015, 16: 105-117.
112 Li B , Neuman C M . A wind tunnel study of aeolian sediment transport response to unsteady winds [J]. Geomorphology, 2014, 214: 261-269.
113 Ellis J T , Sherman D J , Farrell E J , et al . Temporal and spatial variability of aeolian sand transport: Implications for field measurements [J]. Aeolian Research, 2012, 3 (4): 379-387.
114 Barchyn T E , Martin R L , Kok J F , et al . Fundamental mismatches between measurements and models in aeolian sediment transport prediction: The role of small-scale variability [J]. Aeolian Research, 2014, 15: 245-251.
115 Anderson R S , Haff P K . Wind modi?cation and bed response during saltation of sand in air [J]. Acta Mechanica, 1991,(Suppl.1: 21-51.
116 McEwan I K , Willetts B B . Sand transport by wind: A review of the current conceptual model [C] // Pye K,ed. The Dynamics and Environmental Context of Aeolian Sedimentary Systems, 1993, 72: 7-16.
117 Butter?eld G R . Grain transport rates in steady and unsteady turbulent air?ows [J]. Acta Mechanica, 1991,(Suppl.1: 123-134.
118 Jackson D W T , McCloskey J . Preliminary results from a ?eld investigation of aeolian sand transport using high resolution wind and transport measurements [J]. Geophysical Research Letters, 1997, 24 (2): 163-166.
119 Wiggs G F S , Baird A J , Atherton R J . The dynamic effects of moisture on the entrainment and transport of sand by wind [J]. Geomorphology, 2004, 59 (1/4): 13-30.
120 Ma G S , Zheng X J . The ?uctuation property of windblown sand particles and the wind-sand ?ow evolution studied by numerical method [J]. The European Physical Journal E: Soft Matter and Biological Physics, 2011, 34: 54-64.
121 Dupont S , Bergametti G , Marticorena B , et al . Modeling saltation intermittency [J]. Journal of Geophysical Research: Atmospheres, 2013, 118 (13): 7 109-7 128.
122 Ma Yuying , Lei Tingwu , Zhuang Xiaohui . Volume replacement methods for measuring soil particle density [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (15): 130-139.
马玉莹, 雷廷武, 庄晓晖 . 土壤颗粒密度的体积置换法[J]. 农业工程学报, 2014, 30 (15): 130-139.
123 Watson J . Scientific Method in Analysis of Sediments [M]. Abingdon: Taylor & Francis Ltd., 1967.
124 Qiu Mengru , Li Huiru , Wang Ruxing , et al . Minimum sample size for statistic of grain size parameters by field emission scanning electron microscope [J]. Journal of Desert Research, 2017, 37 (5): 843-847.
邱梦如, 李慧茹, 王汝幸,等 . 利用扫描电镜法统计颗粒粒径分布的最小样本量[J]. 中国沙漠, 2017, 37 (5): 843-847.
125 Li Huiru , Liu Bo , Wang Ruxing , et al . Particle-size distribution affected by testing method [J]. Journal of Desert Research, 2018, 38 (3): 619-627.
李慧茹, 刘博, 王汝幸,等 . 土壤粒度组成分析方法对比[J]. 中国沙漠, 2018, 38 (3): 619-627.
126 Li Zhenshan , Ni Jinren . Experimental measurement of air flow velocity fluctuation of wind-sand flux [J]. Journal of Basic Science and Engineering, 2003, 11 (4): 352-360.
李振山, 倪晋仁 . 风沙流中风速脉动的实验测量[J]. 应用基础与工程科学学报, 2003, 11 (4): 352-360.
127 Walker I J , Hesp P A , Davidson-Arnott R G D , et al . Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes, Prince Edward Island, Canada [J]. Geomorphology, 2009, 105 (1/2): 127-138.
128 Smyth T A G , Jackson D , Cooper A . Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions [J]. Earth Surface Processes and Landforms, 2014, 39 (14): 1 847-1 854.
129 Martin R L , Kok J F , Hugenholtz C H , et al . High-frequency measurements of aeolian saltation ?ux: Field-based methodology and applications [J]. Aeolian Research, 2018, 30: 97-114.
130 Baas A C W . Wavelet power spectra of aeolian sand transport by boundary layer turbulence [J]. Geophysical Research Letters, 2006, 33 (5): 151-162.
131 Wang Z , Zhang C , Cen S . Unsteady aeolian saltation [J]. The European Physical Journal E: Soft Matter and Biological Physics, 2018, 41 (10): 121. DOI: 10.1140/epje/i2018-11730-8 .
doi: 10.1140/epje/i2018-11730-8    
132 Udo K . Wind turbulence effects on dune sand transport [J]. Journal of Coastal Research, 2016, 75 (Suppl.1: 333-337.
133 Shang Heying , Yin Zhongdong , Zhang Peng , et al . Characteristics of wind velocity fluctuation over Gobi underlying surface [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 4 (1): 123-128.
尚河英, 尹忠东, 张鹏,等 . 戈壁地表野外风速脉动特征[J]. 南京林业大学学报:自然科学版, 2017, 4 (1): 123-128.
134 Nakashima Y . A fundamental study on the blown sand control [J]. Kyushu University Institutional Repository, 1979, 51: 125-183.
135 Baas A C W , Sherman D J . Formation and behavior of aeolian streamers [J]. Journal of Geophysical Research: Earth Surface, 2005, 110:F03011. DOI:10.1029/2004JF000270 .
doi: 10.1029/2004JF000270    
136 Pfeifer S , Sch?nfeldt H J . The response of saltation to wind speed fluctuations [J]. Earth Surface Processes and Landforms, 2012, 37 (10): 1 056-1 064.
137 Ellis J T . Coherent Structures and Aeolian Saltation [D]. College Station: Texas A&M University, 2006:47-94.
138 Bauer B O , Sherman D J , Wolcott J F . Sources of uncertainty in shear stress and roughness length estimates derived from velocity profiles [J]. Professional Geographer, 1992, 44 (4):453-464.
139 Vinkovic I , Aguirre C , Ayrault M , et al . Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer [J]. Boundary-Layer Meteorology, 2006, 121 (2): 283-311.
[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[7] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[8] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[11] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 0, (): 54-.
[12] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[13] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[14] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[15] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
阅读次数
全文


摘要