Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (8): 879-888    DOI: 10.11867/j.issn.1001-8166.2019.08.0879
新学科 新技术 新发现     
机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究
杜欣儒1,2(),路紫1,2(),董雅晴1,2,丁疆辉1,2
1. 河北师范大学资源与环境科学学院,河北 石家庄 050024
2. 河北省环境演变与生态建设实验室,河北 石家庄 050024
3. Decision Systems &-Service Intelligence Lab, Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales, 2000, Australia
The Heat Airspace Cloud Map in Terminal Airspace of Airports Based on Air Passenger Flow and a Case Study in Beijing International Airport
Xinru Du1,2(),Zi Lu1,2(),Yaqing Dong1,2,Jianghui Ding1,2,Dianshuang Wu
1. School of Resource and Environment Sciences,Hebei Normal University,Shijiazhuang 050024,China
2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
3. Decision Systems &-Service Intelligence Lab, Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales, 2000, Australia
 全文: PDF(4213 KB)   HTML
摘要:

大型枢纽机场终端空域航空流密度计算与热点空域识别是智能化时代一个新的挑战性研究课题,旨在利用航迹大数据自动生成航空流并解读其运行规律。针对机场终端空域航空流密度及其与空域资源占用之间的关系问题,设计了一个机场终端空域航空流量热区云图模型,以北京首都国际机场为案例,构建了由飞行航迹点构成的航空流经度、纬度和高度基本参数以及角度(转向)、速度(速差)额外参数与时间参数的时空数据集,通过航迹聚类和航迹点次数叠加生成4D流量热区云图,进而用细胞单元对应的基本参数和时间参数属性识别了热点空域范围,又用航迹网格识别了额外参数的变化以补充解释其影响,最后用概率密度拟合验证了4D识别的结果。这项研究识别出北京首都机场局部进近空域的热区分布和2个高度层上的热点空域峰值以及飞行转向、速差的影响,揭示出由飞行占用时长差异引起的热点空域范围变化规律。应用4D流量热区云图模型实现了细致准确的信息构建、热点空域变化的阶梯性表达、时空密度及其范围的多参数可视化,可辅助自动动态空域分区和空域资源配置决策,对缓解当前空中交通需求和空域资源限制的矛盾具有一定参考意义。

关键词: 航空流密度热点空域流量热区云图模型航迹网格北京首都国际机场    
Abstract:

The calculation of air passenger flow density and the recognition of heat airspace in terminal areas of large hub airports is a new challenging research in the intelligent era, that is, using big data can automatically generate air passenger flow and basic rules. Aimed for the air passenger flow density in airport and its relationship between occupation and airspace, based on the establishment of the Beijing International Airport 1 h flight, which consists of basic parameters-latitude, longitude and height, additional parameters-dogleg and speed of trajectories, time parameters, a spatio-temporal data set by clustering trajectories and calculation of aircraft trajectories points was made up. Then, heat cloud map of flight trajectories under 4D conditions was generated. Cell was used to identify the basic parameters and time parameter of heat airspace; grid graphs of flight trajectories were used to identify additional parameters and explain the influence on heat airspace; probability fitting graphs were used to verify the accuracy of 4D results. The conclusion is as follows: there are two areas of Beijing International Airport, which have the high density and at two different heights there also exist hot peaks; flight trajectories and speed of trajectories also affect the heat airspace. The variation of heat airspace caused by different flight occupancy time in 4D recognition was revealed. The method realized the 4D heat cloud map of flight trajectories, which is better for detailed and accurate information construction, expression of spatial changes, and more the parameters of density and visualization of temporal and spatial range, which can assist the automatic dynamic airspace sectorization and decision making on airspace allocation, and also have a definite reference meaning in alleviating the contradiction between the current air traffic demand and limited airspace.

Key words: Density of air passenger flow    Heat airspace    Heat cloud map of flight trajectories    Trajectories grid    Beijing International Airport
收稿日期: 2019-04-13 出版日期: 2019-10-11
ZTFLH:  P963  
基金资助: 国家自然科学基金项目“数据通信支持的空域资源配置模型与机制”(41671121);河北省研究生创新资助项目“面向三大复合门户枢纽机场的空域资源动态配置模型与应用”(CXZZBS2018107)
通讯作者: 路紫     E-mail: duxinru0224@126.com;luzi@hebtu.edu.cn
作者简介: 杜欣儒(1989-),女,山西晋中人,博士研究生,主要从事航空地理与空域资源开发研究. E-mail:duxinru0224@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜欣儒
路紫
董雅晴
丁疆辉

引用本文:

杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.

Xinru Du,Zi Lu,Yaqing Dong,Jianghui Ding,Dianshuang Wu. The Heat Airspace Cloud Map in Terminal Airspace of Airports Based on Air Passenger Flow and a Case Study in Beijing International Airport. Advances in Earth Science, 2019, 34(8): 879-888.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.08.0879        http://www.adearth.ac.cn/CN/Y2019/V34/I8/879

图1   PEK 1 h内全部抵离航班多参数时空变化指示图
图2   PEK终端空域3D和4D流量热区云图及其流量热区平面图
图3   PEK终端空域不同高度4D条件下流量热区平面图
图4   PEK终端空域航迹网格图
图5   PEK终端空域基本参数的概率拟合图
1 Du Xinru , Lu Zi , Gao Fang , et al . Design method, application and time alternetive mechanism of flexible use of airspace[J]. Advances in Earth Science, 2016, 31(6): 643-649.
1 杜欣儒, 路紫,郜方,等 .灵活空域使用的设计方法与应用及其时间替代机制[J]. 地球科学进展, 2016, 31(6): 643-649.
2 Farhadi F , Ghoniem A , Al-Salem M . Runway capacity management-an empirical study with application to Doha International Airport[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 18(68): 53-63.
3 Mihetec T , Steiner S , Odi? D . Utilization of flexible airspace structure in flight efficiency optimization[J]. Promet-Traffic & Transportation, 2013, 25(2): 109-118.
4 McNally D , Thipphavong D . Automated separation assurance in the presence of uncertainty[C]//26th International Congress of the Aeronautical Sciences, 2008.
5 Sunil E , Hoekstra J , Ellerbroek J , et al . Metropolis: Relating airspace structure and capacity for extreme traffic densities[C]//11th USA/EUROPE Air Traffic Management R&D Seminar. Lisboa, Portugal, 2015.
6 Manley B , Sherry L . Analysis of performance and equity in ground delay programs[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(6): 910-920.
7 Rodionova O , Sbihi M , Delahaye D , et al . North Atlantic aircraft trajectory optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2 202-2 212.
8 Pellegrini P , Castelli L , Pesenti R . Metaheuristic algorithms for the simultaneous slot allocation problem[J]. IET Intelligent Transport Systems, 2012, 6(4): 453-462.
9 Nosedal J , Piera M A , Ruiz S , et al . An efficient algorithm for smoothing airspace congestion by fine-tuning take-off times[J]. Transportation Research Part C: Emerging Technologies, 2014, 19(44): 171-184.
10 Wu Qunyong , Sun Mei , Cui Lei . A survey of the spatio-temporal data model[J]. Advances in Earth Science, 2016, 31(10): 1 001-1 011.
10 邬群勇, 孙梅, 崔磊 . 时空数据模型研究综述[J]. 地球科学进展, 2016, 31(10): 1 001-1 011.
11 Wei P , Spiers G , Sun D . Algebraic connectivity maximization for air transportation networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 685-698.
12 Wandelt S , Sun X . Efficient compression of 4D-trajectory data in air traffic management[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 844-853.
13 Churchill A M , Lovell D J . Coordinated aviation network resource allocation under uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(1): 19-33.
14 Lu Zi , Du Xinru . The theoretical sources, innovation of methodologies and practice of the exploitation and utilization of airspace in western countries[J]. Advances in Earth Science, 2015, 30(11): 1 260-1 267.
14 路紫, 杜欣儒 . 国外空域资源开发利用的理论基础, 方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1 260-1 267.
15 Enea G , Porretta M . A comparison of 4D-trajectory operations envisioned for Nextgen and SESAR, some preliminary findings[C]//28th Congress of the International Council of the Aeronautical Sciences. Brisbane, Australia, 2012.
16 Klein A . An efficient method for airspace analysis and partitioning based on equalized traffic mass[C]//6th USA/Europe Seminar on Air Traffic Management Research and Development. Baltimore, MD, USA, 2005.
17 Kopardekar P , Rhodes J , Schwartz A , et al . Relationship of maximum manageable air traffic control complexity and sector capacity[C]//26th International Congress of the Aeronautical Sciences. Anchorage, Alaska, 2008.
18 Cook A J , Tanner G , Anderson S . Evaluating the true cost to airlines of one minute of airborne or ground delay[C]//Report to Eurocontrol Experimental Centre, University of Westminster, 2004.
19 Delahaye D , Puechmorel S . 3D airspace sectoring by evolutionary computation[C]//8th Annual Conference on Genetic and Evolutionary Computation. Seattle, Washington, USA, 2006.
20 Basu A , Mitchell J S B , Sabhnani G . Geometric algorithms for optimal airspace design and air traffic controller workload balancing[J]. Journal of Experiment Algorithmics, 2009, 14(1): 75-89.
21 Drew M . Analysis of an optimal sector design method[C]//27th Digital Avionics Systems Conference, 2008.
22 Yousefi A , Donohue G L , Sherry L . High-volume Tube-shape Sectors (HTS): A network of high capacity ribbons connecting congested city pairs[C]//The 23rd Digital Avionics Systems Conference (IEEE Cat. No. 04CH37576). Piscataway: IEEE, 2004: 1-7.
23 Prevot T , Battiste V , Palmer E , et al . Air traffic concept utilizing 4D trajectories and airborne separation assistance[C] //Proceedings of the AIAA Guidance, Navigation, and Conference Control . Austin, Texas, USA, 2003.
24 Bonami P , Olivares A , Soler M , et al . Multiphase mixed-integer optimal control approach to aircraft trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1 267-1 277.
25 McNally M , Kulkarni A . Assessment of influence of land use-transportation system on travel behavior[C]//Transportation Research Record: Journal of the Transportation Research Board, 1997.
26 Shridhar R , Cooper D J . A tuning strategy for unconstrained multivariable model predictive control[J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 4 003-4 016.
27 Romli F I , Yaakob M S . Travel time and cost analysis of PAVE application in Malaysia[J]. Applied Mechanics & Materials, 2014, 11(629): 246-251.
28 Dai R , Cochran J E . Three-dimensional trajectory optimization in constrained airspace[J]. Journal of Aircraft, 2009, 46(2): 627-634.
29 Brinton C , Lent S . Departure queue management in the presence of traffic management initiatives[C]//Integrated Communications, Navigation and Surveillance Conference. Herndon, VA, USA, 2012.
30 Mitchell J S B , Sabhnani G , Krozel J , et al . Dynamic airspace configuration management based on computational geometry techniques[C] guidance //AIAA , Navigation, and Conference Control . Honolulu, Hawaii, USA, 2008.
31 Klein A , Rogers M , Kaing H . Dynamic FPAs: A new method for dynamic airspace configuration[C]//Integrated Communications Navigation and Surveillance Conference, 2008.
32 Vazhkudai S , Schopf J M . Predicting sporadic grid data transfers[C]//High Performance Distributed Computing. Edinburgh, UK, 2002.
33 Trandac H , Baptiste P , Duong V . A constraint-programming formulation for dynamic airspace sectorization[C]//21st Digital Avionics Systems Conference. Irvine, CA, USA, 2002.
34 Delahaye D , Puechmorel S . 3D airspace design by evolutionary computation[C]//IEEE/AIAA 27th Digital Avionics Systems Conference. St. Paul, MN, USA, 2008.
35 Xue M . Airspace sector redesign based on Voronoi diagrams[J]. Journal of Aerospace Computing Information and Communication, 2009, 6(4): 624-634.
36 Hanif D S , Justin M H . Configuration of airspace sectors for balancing air traffic controller workload[J]. Annals of Operations Research, 2013, 203(1): 3-31.
37 Histon J M , Hansman R J , Aigoin G , et al . Introducing structural considerations into complexity metrics[J]. Air Traffic Control Quarterly, 2002, 10(2): 115-130.
38 Cafieri S , Omheni R . Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes[J]. European Journal of Operational Research, 2017, 260(1): 283-290.
39 Dunbar M , Froyland G , Wu C L . Robust airline schedule planning: Minimizing propagated delay in an integrated routing and crewing framework[J]. Transportation Science, 2012, 46(2): 204-216.
40 Klooster J K , de Smedt D . Controlled time of arrival spacing analysis[C]//Proceedings of the Ninth USA/Europe Air Traffic Management Research and Development Seminar. Berlin, Germany, 2011.
[1] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[2] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[3] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[4] 魏彦强, 李新, 高峰, 黄春林, 宋晓谕, 王宝, 马瀚青, 王鹏龙. 联合国2030年可持续发展目标框架及中国应对策略[J]. 地球科学进展, 2018, 33(10): 1084-1093.
[5] 宋世雄, 刘志锋, 何春阳, 赵瑞, 任强. 城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018, 33(10): 1094-1104.
[6] 赵燕慧, 路紫. 航线网络碳排放模型及外部性要素分析[J]. 地球科学进展, 2018, 33(1): 103-111.
[7] 韩增林, 尚颜颜, 郭建科, 王绍博. 东北地区港口内陆空间可达性综合测度[J]. 地球科学进展, 2017, 32(5): 502-512.
[8] 范小杉, 何萍, 董敬儒. 基于项目可持续发展规划的海岸带生态承载力评价研究进展[J]. 地球科学进展, 2017, 32(1): 90-100.
[9] 居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1105-1110.
[10] 白龙, 路紫, 杜欣儒, 郜方. 城市区域(超)低空空域无人机活动通道划设规则与方法[J]. 地球科学进展, 2016, 31(11): 1197-1204.
[11] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[12] 杜欣儒, 路紫, 郜方, 姚赛. 灵活空域使用的设计方法与应用及其时间替代机制[J]. 地球科学进展, 2016, 31(6): 643-649.
[13] 杜欣儒, 路紫. 信息通信技术在空域协同管理决策中的应用——以危险天气条件下风险规避分析为例[J]. 地球科学进展, 2016, 31(3): 269-276.
[14] 程佳佳, 王成金, 刘卫东. 西北地区交通优势度格局及空间分异[J]. 地球科学进展, 2016, 31(2): 192-205.
[15] 杨占红, 吕连宏, 曹宝, 王晓, 罗宏. 国际能源消费特征比较分析及中国发展建议[J]. 地球科学进展, 2016, 31(1): 94-102.