地球科学进展

   

碎屑磷灰石对沉积物源判别的指示
张硕,简星,张巍   
  1. 厦门大学近海海洋环境科学国家重点实验室,海洋与地球学院,福建 厦门 361102
  • 通讯作者: 简星(1987-),男,江西上高人,副教授,主要从事沉积地质学及沉积地球化学研究. E-mail:xjian@xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目“闽江不同季节入海悬浮沉积物的物源分析:来自微量元素和Sr-Nd同位素的约束”(编号:41806052);福建省自然科学基金项目“闽江口沉积物的Nd同位素组成与物源示踪”(编号:2017J05067)资助.

Sedimentary Provenance Analysis Using Detrital Apatite: A Review

Zhang Shuo, Jian Xing, Zhang Wei   

  1. State Key Laboratory of Marine Environmental Science, Xiamen University, College of Ocean and Earth Sciences, Fujian Xiamen, 361102, China
  • Published:2018-11-07
  • Contact: Jian Xing(1987-), Shanggao City, Jiangxi Province, associate professor. Research areas include sedimentary geology and sedimentary geochemistry. E-mail:xjian@xmu.edu.cn
  • About author:Zhang Shuo(1995-),Hanzhong City, Shaanxi Province, Master student. Research area include sedimentary geologyand sedimentary geochemistry.E-mail:zhangshuomarine@163.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Provenance of seasonal suspended sediments discharged by the Minjiang river: constraints from trace elements and Sr-Nd isotopes”(No: 41806052); The Natural Science Foundation in Fujian Province“Nd isotopes and provenance of the sediments in the Minjiang river mouth” (No: 2017J05067).
 基于单颗粒碎屑磷灰石原位分析的物源分析是沉积地质学研究的一种重要手段。磷灰石中Sr,Y和稀土等微量元素含量由SiO2含量和所在熔体中的分配系数控制,微量元素的含量在不同岩石的磷灰石中差异较大,可作为指示其母岩类型的重要指标。磷灰石在物源分析中的应用可归纳为以下3个方面:①元素地球化学,特征元素包括Sr、Y、稀土元素(REE)等;②同位素地球化学包括Sr-Nd同位素、Lu-Hf同位素等;③单颗粒多法定年,即同颗粒磷灰石进行(U-Th)/He、裂变径迹和U-Pb定年分析。综合上述3个方面可获得磷灰石的母岩类型、形成条件和后期演化、源区抬升剥蚀史、沉积区沉降史等信息。尽管碎屑磷灰石的热年代学目前在沉积物源研究中广泛运用,但基于碎屑磷灰石元素及同位素地球化学(包括磷灰石U-Pb同位素定年)的沉积物源判别仍处于起步阶段,有望在沉积地质学、盆地分析、构造地质学等研究领域具有广阔的应用前景。
In situ analysis of detrital apatite is a significant approach to sedimentary provenance analysis, which is an important aspect in sedimentary geology study. Several trace elements such as Sr, Y and rare earth elements (REEs) concentrate in apatites, and the distribution of these elements is depended on the content of SiO2 and the distribution coefficient of the melt, thus the trace element abundances is obviously different in different rocks. These features can be used to indicate parent-rocks of detrital apatites in sedimentary rocks. The approaches and proxies of detrital apatite to sedimentary provenance analysis can be summarized as follows. ①elemental geochemistry, such as Sr, Y, REEs, the approaches include chondrite-normalised REE distribution patterns of apatites, classification and regression tree (CART) and discriminant plots of REEparameters ; ②isotopic geochemistry, including Sr-Nd and Lu-Hf isotopes; ③Multi-dating , including low-temperature t thermochronology such as (U-Th)/He (AHe)and fission track (AFT) dating, and high-temperature thermochronology such as U-Pb dating. Based on an integrated analysis using these methods, we can get various and comprehensive geological information such as the rock type, formation conditions and evolution of source rocks, the history of uplift and exhumation of source areas and even the subsidence history of sedimentary basins. Although the low-temperature thermochronology of detrital apatite is widely used in sedimentary provenance analysis, the elemental and isotopic geochemistry, as well as the U-Pb dating, remain to be developed and. These approaches are supposed to have wide application prospects in several research areas such as tectonics, sedimentary geology basin analysis and even paleoclimatology.

中图分类号: 

[1] 杨隽豪, 王勇生, 白桥, 马威威. 合肥盆地中部中—新生界沉积岩碎屑锆石 LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2022, 37(8): 871-880.
[2] 段美铃, 宋昊, 胡伟, 廖昕. 川北韩家店组页岩风化过程的矿物学与元素地球化学研究[J]. 地球科学进展, 2022, 37(6): 641-659.
[3] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[4] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[7] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[8] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[9] 张文防,戴霜,刘海娇,陈世强,张永全,张莉莉,张瑞,汪禄波. 六盘山地区下白垩统红色绿色泥岩地球化学特征及气候环境[J]. 地球科学进展, 2012, 27(11): 1236-1244.
[10] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[11] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[12] 陈国能. 花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144.
[13] 贺秀斌. 微量元素锶及其同位素的地球化学研究与应用前景[J]. 地球科学进展, 1997, 12(1): 15-19.
[14] 谭明,刘东生. 洞穴碳酸钙沉积的古气候记录研究[J]. 地球科学进展, 1996, 11(4): 388-395.
[15] 洪阿实, 彭子成,李平. 洞穴石笋古温度研究的同位素地球化学方法[J]. 地球科学进展, 1995, 10(4): 348-352.
阅读次数
全文


摘要