Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (9): 898-913    DOI: 10.11867/j.issn.1001-8166.2018.09.0898
综述与评述     
涡动相关能量闭合问题的研究进展
周彦昭1,2(), 李新3,4,*()
1.中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室,甘肃 兰州 730000
2.中国科学院大学,北京 100049
3.中国科学院青藏高原地球科学卓越创新中心,北京 100101
4.中国科学院青藏高原研究所,北京 100101
Progress in the Energy Closure of Eddy Covariance Systems
Yanzhao Zhou1,2(), Xin Li3,4,*()
1.Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou 730000, China
2.University of Chinese Academy of Sciences,Beijing 100049, China
3.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
4.Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(1556 KB)   HTML
摘要:

涡动相关系统(EC)观测的湍流通量总是低于有效能量(净辐射与地表热储量之差),两者的差值可达有效能量的10%~30%。这种EC观测的湍流通量低估的现象,称之为“EC能量闭合问题”,已成为微气象学研究中的一大瓶颈。过去的几十年间大量学者对此问题进行了深入研究,积累了丰富的认知。系统介绍了EC能量闭合问题的成因,总结了学者对于EC能量闭合问题的认识以及基于这些认识提出的可能的修正方案,并详细评述了这些修正方案的优劣。与之前的综述不同,重点介绍了基于大涡模拟(LES)研究EC能量闭合问题的方法和进展。指出目前缺少高精度且时间连续、空间密集(如矩阵式观测)的地表通量观测数据集、LES尚不足以完全表征真实的EC观测、大尺度湍涡影响EC能量闭合的机制尚不清楚等问题。今后应加强大尺度湍涡影响EC能量闭合的机制研究,同时开展空间矩阵式观测,验证LES的结果。

关键词: EC能量闭合大涡模拟陆面过程微气象    
Abstract:

The sum of turbulent fluxes measured by the eddy-covariance method is often 10%~30% lower than available energy (i.e., the net radiation minus the ground heat flux). This systematic bias in the EC method is called the "EC energy closure problem" and has been one of the biggest challenges in micrometeorology. In the past decades, lots of studies have focused on this problem and have found extensive knowledge about it. In this paper, we introduced the reasons to the EC energy closure problem and systematically summarized the understandings on this problem with a discussion regarding the merits and limitations of possible correction methods. Compared with previous overview studies, our study focused on the methods and progresses on the EC energy closure problem using the Large Eddy Simulation (LES). The existing problem, e.g., the lack of high quality and high spatial density of "surface true fluxes" observations (e.g., matric observations), the failure of fully emulating the EC using the LES and how to mechanistically understand that large eddies affect turbulence structures and lead to non-closure problem, hinder the further understanding of the EC energy closure problem. Thus, in the future, focus should be put on the mechanistic understanding of how large eddies affect the non-closure problem and some dense field observations to obtain the high quality "surface true fluxes".

Key words: Eddy Covariance    Energy Closure    Large Eddy Simulation    Land Surface Progress    Micrometeorology.
出版日期: 2018-10-24
ZTFLH:  P433  
基金资助: ?国家自然科学基金项目“黑河流域水—生态—经济系统的集成模拟与预测”(编号: 91425303)中国科学院交叉创新团队“水文数据同化交叉团队”(编号: XXH13505-06)资助.
通讯作者: 李新     E-mail: zhouyanzhao@lzb.ac.cn;lixin@lzb.ac.cn
作者简介:

作者简介:周彦昭(1989-)男,河北邢台人,博士研究生,主要从事遥感水文和边界层气象研究. E-mail:zhouyanzhao@lzb.ac.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周彦昭
李新

引用本文:

周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.

Yanzhao Zhou, Xin Li. Progress in the Energy Closure of Eddy Covariance Systems. Advances in Earth Science, 2018, 33(9): 898-913.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.09.0898        http://www.adearth.ac.cn/CN/Y2018/V33/I9/898

试验名称 不闭合率/% 天数/d 下垫面类型 参考文献
FIFE-89 0~10 40 草地 [14]
Vancouver Island-90 17 9 落叶林 [15]
TARTEX-90 33 24 裸地 [16]
KUREX-91 38 27 农田 [17]
LINEX-96/2 21 3 草地 [18]
LITFASS-98 14 21 裸地 [19]
EBEX-2000 10 约30 玉米 [13]
GAME-Tibet/TIPEX 10~20 约150 高原草地 [1]
LITFASS-2003 20~30 30 玉米和草地 [9]
金塔试验 28 6 小麦 [20]
WATER-2008 18 6 玉米 [21]
HiWATER-2012 8 约100 玉米、荒漠、戈壁、沙漠、果园 [7]
HiWATER-STEWC 12 约100 胡杨、柽柳、耕地、裸地 [4]
表1  主要野外观测试验中能量闭合情况(据参考文献[13]修改)
图1  EC控制体积方法示意图[31] u,v,w 分别为顺风向速度、侧风向速度和垂直速度; c为测定的标量
方法 优点 缺点
基于野外
实测数据
方法简单;结果可靠 大气环境多变,观测仪器易受环境因子和电磁因素干扰;难以进行控制实验分析某一变量对EC能量闭合问题的影响
基于LES
数据
便于进行控制实验,分析某一变量对EC能量闭合问题的影响;避免观测仪器噪声的干扰,便于理论分析和解释EC能量闭合问题 边界条件不易选取;计算量大,目前很难进行实际EC观测高度处的高精度的LES模拟
表2  基于LES和野外实测数据研究EC能量闭合问题的优缺点
图2  控制体积示意图(据参考文献[72]修改)
方法 优点 缺点
控制面方法 方法简单,便于数值分析,对数值模拟分辨率要求较低 只能用于均匀和一维异质性下垫面
控制体方法 便于理论分析和解释EC能量闭合问题,可用于复杂下垫面,便于数值分析 实际中控制体积的选取较为复杂,不易于实际应用;对数值模拟分辨率和精度要求较高
表3  基于控制面和控制体的方法的优缺点
地表 水平分辨率/m 垂直分辨率/m 模型 SGS 参考文献
均匀 50 50 PALM 1.5阶TKE [46]
均匀 100 50 北大LES K闭合 [70]
均匀 10,50,2 10,50,2 PALM 1.5阶TKE [45]
均匀 50 20 NCAR LES 1.5阶TKE [44]
均匀 100,25 30~70,8~40 GALES 1.5阶TKE [43]
不均匀 50 50 PALM 1.5阶TKE [47]
不均匀 20 20 PALM 1.5阶TKE [72]
不均匀 10 10 PALM 1.5阶TKE [71]
均匀和不均匀 50 6~50 WRF LES 1.5阶TKE [42]
表4  基于LES的EC能量闭合的研究
影响因子 I关系 参考文献
滤波方法 去趋势,I较大;去平均I较小 [42,43,45,77]
平均时间 平均时间越短,I越大 [31,42,43,45,46,70,78]
高度 高度越高,I越大 [42~46,70]
水平风速 风速越小,I越大 [42~46,49,58,70,79,80]
相位差 地表热储存量与净辐射的相位差越大,I越大;垂直速度脉动与所测标量脉动相位差越大,I越大 [81,82]
地表异质性 地表异质性越强,I越大 [7,27,47,49]
u*/w* u*/w*越小,I越大 [44]
zi/L -zi/L越大,I越大 [43]
z/L -z/L越大,I越大 [80,83]
湍流强度 相对垂直湍越弱,I越大;湍流动能越小,I越大 [27,42]
垂直速度 垂直速度越高,I越大 [84]
表5  EC能量闭合相关的影响因子
公式 备注 参考文献
NEE=0h?c-?tdz+w'c'ˉh+w-hc-h-1h0hc-dz 一维质量守恒方程推导;单个站点验证;
理论推导
[58]
EBR=Kz0effLeff+C 经验公式;4个站点以及Eder等[85]独立
验证
[17]
[I]=expa+bu*w*+c1.1+dzzi+f20.5 基于LES的经验公式;
Eder等[86]独立验证
[44]
H=w'θ'ˉh=-ρcpKθ?θ?z+ρcpK0h?h·Vdz
LE=-ρλvKq?q?z+ρλvKWq0h?h·Vdz
尚未得到验证 [86]
LE=LEECHEC+LEEC(Rn-G)
H=HECHEC+LEEC(Rn-G)
Twine等[12]和Foken等[25]建议使用 [12]
H=HEC
LE=Rn-G-HEC
一些学者基于此,修正EC能量闭合问题 [12]
表6  EC能量闭合修正公式
[1] Wang Jiemin.Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-TIBET/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.
doi: 10.3321/j.issn:1000-0534.1999.03.005
[1] [王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294.]
doi: 10.3321/j.issn:1000-0534.1999.03.005
[2] Li Xin, Li Xiaowen, Li Zengyuan, et al.Watershed allied telemetry experimental research[J]. Journal of Geophysical ResearchAtmospheres, 2009, 114: D22103. DOI: 10.1029/2008jd011590.
[3] Li Xin, Cheng Guodong, Liu Shaomin, et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160.
[4] Zhou Yanzhao, Li Xin, Yang Kun, et al.Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin, China[J]. Agricultural and Forest Meteorology, 2018, 249: 210-227.
[5] Williams M, Richardson A D, Reichstein M, et al.Improving land surface models with FLUXNET data[J]. Biogeosciences, 2009, 6(7): 1 341-1 359.
doi: 10.5194/bg-6-1341-2009
[6] Jung M, Reichstein M, Ciais P, et al.Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7 318): 951-954.
doi: 10.1038/nature09396 pmid: 20935626
[7] Xu Ziwei, Ma Yanfei, Liu Shaomin, et al.Assessment of the energy balance closure under advective conditions and its impact using remote sensing data[J]. Journal of Applied Meteorology and Climatology, 2017, 56(1): 127-140.
[8] Eder F, Schmidt M, Damian T, et al.Mesoscale eddies affect near-surface turbulent exchange: Evidence from lidar and tower measurements[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 189-206.
[9] Foken T, Mauder M, Liebethal C, et al.Energy balance closure for the LITFASS-2003 experiment[J]. Theoretical and Applied Climatology, 2010, 101(1/2): 149-160.
doi: 10.1007/s00704-009-0216-8
[10] Wilson K, Goldstein A, Falge E, et al.Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1/4): 223-243.
doi: 10.1016/S0168-1923(02)00109-0
[11] Aubinet M, Grelle A, Ibrom A, et al.Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology[J]. Advances in Ecological Research, 2000, 30: 113-175.
doi: 10.1016/S0065-2504(08)60018-5
[12] Twine T E, Kustas W, Norman J, et al.Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 2000, 103(3): 279-300.
doi: 10.1016/S0168-1923(00)00123-4
[13] Oncley S P, Foken T, Vogt R, et al.The energy balance experiment EBEX-2000. Part I: Overview and energy balance[J]. Boundary-Layer Meteorology, 2007, 123(1): 1-28.
doi: 10.1007/s10546-007-9161-1
[14] Verma S B, Kim J, Clement R J.Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D17): 18 629-18 639.
[15] Lee Xuhui, Black T A.Atmospheric turbulence within and above a douglas-fir stand. Part II: Eddy fluxes of sensible heat and water vapour[J]. Boundary-Layer Meteorology, 1993, 64(4): 369-389.
[16] Foken T, Gerstmann W, Richter S H, et al.Study of the Energy Exchange Processes over Different Types of Surfaces during TARTEX-90’[M]. Offenbach am Main: Forschung und Entwicklung, 1993.
[17] Panin G N, Tetzlaff G, Raabe A.Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions[J]. Theoretical and Applied Climatology, 1998, 60(1/4): 163-178.
[18] Foken T, Jegede O O,Weisensee U, et al.Results of the LINEX-96/2 Experiment[M]. Offenbach am Main: Forschung und Entwicklung, 1997.
[19] Beyrich F, Richter S H, Weisensee U, et al.Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: Selected results from the LITFASS-98 experiment[J]. Theoretical and Applied Climatology, 2002, 73(1): 19-34.
[20] Zhang Yu, Lü Shihua, Chen Shiqiang, et al.Characteristics of energy budget and microclimate on the edge of oasis summer[J]. Plateau Meteorology, 2005, 24(4): 527-533.
[20] [张宇, 吕世华, 陈世强, 等. 绿洲边缘夏季小气候特征及地表辐射与能量平衡特征分析[J]. 高原气象, 2005, 24(4): 527-533.]
[21] Wang Jiemin, Wang Weizhen, Liu Shaomin, et al.The problems of surface energy balance closure—An overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713.
[21] [王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题———综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.]
[22] Kohsiek W, Liebethal C, Foken T, et al.The energy balance experiment EBEX-2000. Part III: Behaviour and quality of the radiation measurements[J]. Boundary-Layer Meteorology, 2007, 123(1): 55-75.
doi: 10.1007/s10546-006-9135-8
[23] Mauder M, Oncley S P, Vogt R, et al.The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods[J]. Boundary-Layer Meteorology, 2007, 123(1): 29-54.
doi: 10.1007/s10546-006-9139-4
[24] Foken T.The energy balance closure problem: An overview[J]. Ecological Applications, 2008, 18(6): 1 351-1 367.
doi: 10.1890/06-0922.1 pmid: 18767615
[25] Foken T, Aubinet M, Finnigan J J, et al. Results of a panel discussion about the energy balance closure correction for trace gases[J]. Bulletin of the American Meteorological Society Results of a panel discussion about the energy balance closure correction for trace gases[J]. Bulletin of the American Meteorological Society, 2011, 92(4): Es13-Es18.
[26] Katul G G, Oren R, Manzoni S, et al. Evapotranspiration: A process driving mass transport Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50: RG3002.
[27] Zuo Hongchao, Xiao Xia, Yang Qidong, et al.On the atmospheric movement and the imbalance of observed and calculated energy in the surface layer[J]. Science in China (Series D), 2012, 55(9): 1 518-1 532.
doi: 10.1007/s11783-011-0280-z
[27] [左洪超, 肖霞, 杨启东, 等. 论近地层大气运动特征与观测和计算能量不平衡的成因[J]. 中国科学:D辑, 2012, 42(9): 1 370-1 384.]
doi: 10.1007/s11783-011-0280-z
[28] Leuning R, Van Gorsel E, Massman W J, et al.Reflections on the surface energy imbalance problem[J]. Agricultural and Forest Meteorology, 2012, 156: 65-74.
doi: 10.1016/j.agrformet.2011.12.002
[29] Wohlfahrt G, Widmoser P.Can an energy balance model provide additional constraints on how to close the energy imbalance?[J]. Agricultural and Forest Meteorology, 2013, 169: 85-91.
doi: 10.1016/j.agrformet.2012.10.006 pmid: 3898304
[30] Metzger S.Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations[J]. Agricultural and Forest Meteorology, 2018, 255: 68-80.
[31] Finnigan J J, Clement R, Malhi Y, et al.A re-evaluation of long-term flux measurement techniques—Part I: Averaging and coordinate rotation[J]. Boundary-Layer Meteorology, 2003, 107(1): 1-48.
doi: 10.1023/A:1021554900225
[32] Aubinet M, Vesala T, Papale D.Eddy Covariance—A Practical Guide to Measurement and Data Analysis[M]. New York: Springer Science & Business Media, 2012.
[33] Xu Ziwei, Liu Shaomin, Li Xin, et al.Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 13 140-13 157.
doi: 10.1002/2013JD020260
[34] Mauder M, Jegede O O, Okogbue E C, et al.Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season[J]. Theoretical and Applied Climatology, 2007, 89(3/4): 171-183.
[35] Xu Ziwei, Liu Shaomin, Xu Tongren, et al.The observation and calculation method of soil heat flux and its impact on the energy balance closure[J]. Advances in Earth Science, 2013, 28(8): 875-889.
[35] [徐自为, 刘绍民, 徐同仁, 等. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.]
[36] Heusinkveld B G, Jacobs A F G,Holtslag A M, et al. Surface energy balance closure in an arid region: Role of soil heat flux[J]. Agricultural and Forest Meteorology, 2004, 122(1/2): 21-37.
doi: 10.1016/j.agrformet.2003.09.005
[37] Meyers T P, Hollinger S E.An assessment of storage terms in the surface energy balance of maize and soybean[J]. Agricultural and Forest Meteorology, 2004, 125(1/2): 105-115.
doi: 10.1016/j.agrformet.2004.03.001
[38] Lee Xuhui, Massman W, Law B.Handbook of Micrometeorology—A Guide for Surface Flux Measurement and Analysis[M]. Netherlands: Springer, 2005.
[39] Foken T.Micrometeorology[M]. Heidelberg: Springer Berlin, 2008.
[40] Foken T, Wimmer F, Mauder M, et al.Some aspects of the energy balance closure problem[J]. Atmospheric Chemistry and Physics, 2006, 6: 4 395-4 402.
[41] Culf A D, Foken T, Gash J H C. The energy balance closure problem[M]∥Kabat P, ed. Vegetation, Water, Humans and the Climate: A New Perspective on An Interactive System. Springer, 2004.
[42] Zhou Yanzhao, Li Dan, Liu Heping, et al.Diurnal variations of the flux imbalance over homogeneous and heterogeneous landscapes[J]. Boundary-Layer Meteorology, 2018, 168(3): 417-442.
doi: 10.1007/s10546-018-0358-2
[43] Schalkwijk J,Jonker H J J, Siebesma A P. An investigation of the eddy-covariance flux imbalance in a year-long large-eddy simulation of the weather at Cabauw[J]. Boundary-Layer Meteorology, 2016, 160(1): 17-39.
[44] Huang Jianping, Lee Xuhui, Patton E G.A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer[J]. Boundary-Layer Meteorology, 2008, 127(2): 273-292.
doi: 10.1007/s10546-007-9254-x
[45] Steinfeld G, Letzel M O, Raasch S, et al.Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: Results of a large-eddy simulation study[J]. Boundary-Layer Meteorology, 2007, 123(1): 77-98.
doi: 10.1007/s10546-006-9133-x
[46] Kanda M, Inagaki A, Letzel M O, et al.LES study of the energy imbalance problem with eddy covariance fluxes[J]. Boundary-Layer Meteorology, 2004, 110(3): 381-404.
doi: 10.1023/B:BOUN.0000007225.45548.7a
[47] Inagaki A, Letzel M O, Raasch S, et al.Impact of surface heterogeneity on energy imbalance: A study using LES[J]. Journal of the Meteorological Society of Japan, 2006, 84(1): 187-198.
[48] Panin G N, Tetzlaff G.A measure of inhomogeneity of the land surface and parametrization of turbulent fluxes under natural conditions[J]. Theoretical and Applied Climatology, 1999, 62(1): 3-8.
[49] Stoy P C, Mauder M, Foken T, et al.A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity[J]. Agricultural and Forest Meteorology, 2013, 171: 137-152.
[50] Mauder M, Foken T.Impact of post-field data processing on eddy covariance flux estimates and energy balance closure[J]. Meteorologische Zeitschrift, 2006, 15(6): 597-609.
[51] Sakai R K, Fitzjarrald D R, Moore K E.Importance of low-frequency contributions to eddy fluxes observed over rough surfaces[J]. Journal of Applied Meteorology, 2001, 40(12): 2 178-2 192.
doi: 10.1175/1520-0450(2001)0402.0.CO;2
[52] Mauder M, Desjardins R L, Pattey E, et al.An attempt to close the daytime surface energy balance using spatially-averaged flux measurements[J]. Boundary-Layer Meteorology, 2010, 136(2): 175-191.
doi: 10.1007/s10546-010-9497-9
[53] Liu Shaomin, Xu Ziwei, Wang Weizhen, et al.A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1 291-1 306.
[54] Aubinet M, Feigenwinter C, Heinesch B, et al.Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests[J]. Agricultural and Forest Meteorology, 2010, 150(5): 655-664.
[55] Mauder M, Desjardins R L, Pattey E, et al.Measurement of the sensible eddy heat flux based on spatial averaging of continuous ground-based observations[J]. Boundary-Layer Meteorology, 2008, 128(1): 151-172.
doi: 10.1007/s10546-008-9279-9
[56] Aubinet M, Berbigier P, Bernhofer C H, et al.Comparing CO2 storage and advection conditions at night at different carboeuroflux sites[J]. Boundary-Layer Meteorology, 2005, 116(1): 63-94.
doi: 10.1007/s10546-004-7091-8
[57] Paw K T, Baldocchi D D, Meyers T P, et al.Correction of eddy-covariance measurements incorporating both advective effects and density fluxes[J]. Boundary-Layer Meteorology, 2000, 97(3): 487-511.
doi: 10.1023/A:1002786702909
[58] Lee Xuhui.On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology, 1998, 91(1/2): 39-49.
doi: 10.1016/S0168-1923(98)00071-9
[59] Finnigan J.A comment on the paper by Lee (1998): "On micrometeorological observations of surface-air exchange over tall vegetation"[J]. Agricultural and Forest Meteorology, 1999, 97(1): 55-64.
[60] Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao.Theory and Applications of Large Eddy Simulation[M]. Beijing: Tsinghua University Press, 2008.
[60] [张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008.]
[61] Cui Guixiang, Shi Ruifeng, Wang Zhishi, et al.Large eddy simulation of city micro-atmospheric environment[J]. Science in China (Series G), 2008, 38(6): 626-636.
[61] [崔桂香, 史瑞丰, 王志石, 等. 城市大气微环境大涡模拟研究[J]. 中国科学:G辑, 2008, 38(6): 626-636.]
[62] Schalkwijk J, Jonker H J J, Siebesma A P, et alWeather forecasting using GPU-Based large-eddy simulations[J]. Bulletin of the American Meteorological Society, 2015, 96(5): 715-724.
doi: 10.1175/BAMS-D-14-00114.1
[63] Cui Guixiang, Xu Chunxiao, Zhang Zhaoshun, et al.Progress in large eddy simulation of turbulent flows[J]. Acta Aerodynamica Sinica, 2004, 22(2): 121-129.
doi: 10.3969/j.issn.0258-1825.2004.02.001
[63] [崔桂香, 许春晓, 张兆顺,等. 湍流大涡数值模拟进展[J]. 空气动力学学报, 2004, 22(2): 121-129.]
doi: 10.3969/j.issn.0258-1825.2004.02.001
[64] Jiang Weimei, Miao Shiguang.30 years review and perspective of the research on the large eddy simulation and atmospheric boundary layer[J]. Advances in Nature Sciences, 2004, 14(1): 13-21.
doi: 10.3321/j.issn:1002-008X.2004.01.003
[64] [蒋维楣, 苗世光. 大涡模拟与大气边界层研究——30年回顾与展望[J]. 自然科学进展, 2004, 14(1): 13-21.]
doi: 10.3321/j.issn:1002-008X.2004.01.003
[65] Liu Yushi, Miao Shiguang, Zhang Chaolin, et al.Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107: 106-117.
doi: 10.1016/j.jweia.2012.03.033
[66] Hong S Y, Dudhia J. Next-generation numerical weather prediction: Bridging parameterization, explicit clouds,large eddies[J]. Bulletin of the American Meteorological Society, 2012, 93(1): ES6-ES9.
[67] Schalkwijk J, Griffith E J, Post F H, et al.High-performance simulations of turbulent clouds on a esktop PC[J]. Bulletin of the American Meteorological Society, 2012, 93(3): 307-314.
[68] Huang H-Y, Margulis S A.On the impact of surface heterogeneity on a realistic convective boundary layer[J]. Water Resources Research, 2009, 45(4): W04425. DOI:10.1029/2008WR007175.
doi: 10.1029/2008WR007175
[69] Cui Guixiang, Zhang Zhaoshun, Xu Chunxiao, et al.Research advances in large eddy simulation of urban atmospheric environment[J]. Advances in Mechanics, 2013, 43(3): 295-328.
doi: 10.6052/1000-0992-13-016
[69] [崔桂香, 张兆顺, 许春晓, 等. 城市大气环境的大涡模拟研究进展[J]. 力学进展, 2013, 43(3): 295-328.]
doi: 10.6052/1000-0992-13-016
[70] Chen Jiayi, Fan Shaohua, Zhao Chuanfeng, et al.The underestimation of the turbulent fluxes in eddy correlation techniques[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(3): 423-432.
doi: 10.3878/j.issn.1006-9895.2006.03.06
[70] [陈家宜, 范邵华, 赵传峰, 等. 涡旋相关法测定湍流通量偏低的研究[J]. 大气科学, 2006, 30(3): 423-432.]
doi: 10.3878/j.issn.1006-9895.2006.03.06
[71] De Roo F, Mauder M.The influence of idealized surface heterogeneity on virtual turbulent flux measurements[J]. Atmospheric Chemistry and Physics, 2018, 18(7): 5 059-5 074.
[72] Eder F, De Roo F, Rotenberg E, et al.Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements[J]. Agricultural and Forest Meteorology, 2015, 211: 115-127.
[73] Mahrt L.Computing turbulent fluxes near the surface: Needed improvements[J]. Agricultural and Forest Meteorology, 2010, 150(4): 501-509.
doi: 10.1016/j.agrformet.2010.01.015
[74] Finnigan J.Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 519-571.
[75] Raupach M R, Shaw R H.Averaging procedures for flow within vegetation canopies[J]. Boundary-Layer Meteorology, 1982, 22(1): 79-90.
doi: 10.1007/BF00128057
[76] Patton E G, Sullivan P P, Moeng C-H.The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface[J]. Journal of the Atmospheric Sciences, 2005, 62(7): 2 078-2 097.
[77] Rannik U, Vesala T.Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method[J]. Boundary-Layer Meteorology, 1999, 91(2): 259-280.
[78] Charuchittipan D, Babel W, Mauder M, et al.Extension of the averaging time in eddy-covariance measurements and its effect on the energy balance closure[J]. Boundary-Layer Meteorology, 2014, 152(3): 303-327.
doi: 10.1007/s10546-014-9922-6
[79] Li Zhengquan, Yu Guirui, Wen Xuefa, et al.Energy balance closure at ChinaFLUX sites[J]. Science in China (Series D), 2004, 48(Suppl.1): 51-62.
[79] [李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J]. 中国科学:D辑, 2004, 34(A02): 46-56.]
[80] Franssen H J H, St?ckli R, Lehner I, et al. Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations[J]. Agricultural and Forest Meteorology, 2010, 150(12): 1 553-1 567.
[81] Gao Zhiqiu, Horton R, Liu Heping.Impact of wave phase difference between soil surface heat flux and soil surface temperature on soil surface energy balance closure[J]. Journal of Geophysical ResearchAtmospheres, 2010, 115: D16112.DOI:10.1029/2009JDB278.
[82] Gao Zhongming, Liu Heping, Katul G K, et al.Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies[J]. Environmental Research Letters, 2017, 12(3): 034025.DOI:10.1068/17488-9326/006256.
[83] Mcgloin R, ?igut L, Havránková K, et al.Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies[J]. Agricultural and Forest Meteorology, 2018, 248: 418-431.
[84] Zhang Qiang, Li Hongyu.The relationship between surface energy balance unclosure and vertical sensible heat advection over the Loess Plateau[J]. Acta Physica Sinica, 2010, 59(8): 5 889-5 896.
[84] [张强, 李宏宇. 黄土高原地表能量不闭合度与垂直感热平流的关系[J]. 物理学报, 2010, 59(8): 5 889-5 896.]
[85] Eder F, De Roo F, Kohnert K, et al.Evaluation of two energy balance closure parametrizations[J]. Boundary-Layer Meteorology, 2014, 151(2): 195-219.
doi: 10.1007/s10546-013-9904-0
[86] Hu Yinqiao, Chen Jinbei, Lü Shihua.From the clasic theory of turbulence to the Nonequilibrium Thermodynamic Theory of atmospheric turbulence[J]. Plateau Meteorology, 2012, 31(1): 1-27.
[86] [胡隐樵, 陈晋北, 吕世华. 从湍流经典理论到大气湍流非平衡态热力学理论[J]. 高原气象, 2012, 31(1): 1-27.]
[87] Hu Yinqiao, Chen Jinbei.Nonequilibrium thermodynamic theory of the atmospheric turbulence[M]∥Lang P R, Lombargo F S, eds. Atmospheric Turbulence, Meteorological Modeling and Aerodynamics. Nova Science Publishers Inc., 2009.
[88] Chen Jinbei, Hu Yinqiao, Lü Shihua, et al.Experimental demonstration of the coupling effect of vertical velocity on latent heat flux[J]. Science in China (Series D), 2013, 56(4): 684-692.
[88] [陈晋北, 胡隐樵, 吕世华, 等. 垂直速度对水汽垂直湍流通量交叉耦合效应的实验验证[J]. 中国科学:D辑, 2013, 43(3): 490-498.]
[89] Panin G N, Bernhofer C.Parametrization of turbulent fluxes over inhomogeneous landscapes[J]. Izvestiya Atmospheric and Oceanic Physics, 2008, 44(6): 701-716.
doi: 10.1134/S0001433808060030
[90] Li Xin, Liu Shaomin, Xiao Qing, et al.A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system[J]. Scientific Data, 2017, 4: 1-11.
[1] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[2] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[3] 罗志波. 阿拉善地块早前寒武纪大陆地壳的形成与演化[J]. 地球科学进展, 2015, 30(8): 878-890.
[4] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[5] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究*[J]. 地球科学进展, 2015, 30(4): 487-494.
[6] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[7] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[8] 张克存, 安志山, 屈建军, 庞营军. 基于三维激光扫描仪的青藏铁路风沙工程效益评价[J]. 地球科学进展, 2014, 29(10): 1197-1203.
[9] 吴学睿,李颖. GNSS-R陆面遥感中反射信号的极化特性研究[J]. 地球科学进展, 2012, 27(8): 895-900.
[10] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[11] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[12] 张强,张之贤,问晓梅,王胜. 陆面蒸散量观测方法比较分析及其影响因素研究[J]. 地球科学进展, 2011, 26(5): 538-547.
[13] 蔡福,周广胜,李荣平,明惠青. 陆面过程模型对下垫面参数动态变化的敏感性分析[J]. 地球科学进展, 2011, 26(3): 300-310.
[14] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[15] 蒋维楣,王咏薇,张宁. 城市陆面过程与边界层结构研究[J]. 地球科学进展, 2009, 24(4): 411-419.