地球科学进展 ›› 2014, Vol. 29 ›› Issue (10): 1120 -1125. doi: 10.11867/j.issn.1001-8166.2014.10.1120

上一篇    下一篇

从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题
郑聚锋( ), 潘根兴, 程琨 *( ), 张旭辉   
  1. 南京农业大学农业资源与生态环境研究所,江苏 南京210095
  • 出版日期:2014-10-20
  • 通讯作者: 程琨 E-mail:zhengjufeng@njau.edu.cn;chengkun@njau.edu.cn
  • 基金资助:
    国家自然科学基金项目“人工林(杨树—土壤)系统中植物有机碳积累对土壤有机碳固定影响机制的研究”(编号:41101269);国家科技支撑计划项目“气候变化对农业生产的影响及风险分析评估”(编号:2012BAC19B01)资助

A Discussion on Quantification of Greenhouse Gas Emissions from Wetlands Based on “2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands”

Jufeng Zheng( ), Genxing Pan, Kun Cheng( ), Xuhui Zhang   

  1. Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095,China
  • Online:2014-10-20 Published:2014-10-20

通过对《IPCC 2006 国家温室气体排放清单增补:2013湿地》出台的背景、湿地类别的划分、温室气体计量方法学进行解读,从温室气体排放源、计量方法和排放因子3个方面对湿地温室气体排放的计量进行了分析,重点探讨了对《IPCC 2006国家温室气体排放清单指南》中方法学的更新与改进,结合我国湿地研究的现状,进一步指出我国湿地研究中亟待解决的关键问题和未来研究的主要方向,为我国湿地排放清单指南的编制提供了理论指导。

To fill the Gaps of Greenhouse Gas (GHG) inventory for wetland in “2006 IPCC Guidelines for National Greenhouse Gas Inventories” (“IPCC 2006”), the “2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas (GHG) Inventories: Wetlands” (“Wetlands Supplement”) was published to public on February 28, 2014.The “Wetland Supplement” was reviewed from the aspects of the background, the division of wetland types and the methodology for GHG inventory. The GHG methodology was investigated from GHG emission source, GHG account methods and GHG emission factors. Especially, the updates and improvements for the “IPCC 2006” were emphatically discussesd. In general, the “Wetland Supplement” provided the new estimation methods of GHG emissions and removals from coastal wetlands and constructed wetlands for wastewater treatment by human activities, and also updated some key emission factors for various types of wetlands. Considering the present situation in China, the problems demanding prompt solution and the future research trend was pointed out for wetland research area. In the further, this study could provide the scientific basis for wetland GHG inventory in China.

中图分类号: 

表1
Table 1 Comparison between “2013 Wetlands Supplement” and “2006 IPCC Guidelines”
湿地类型 温室气体 2006清单指南 2013湿地增补
内陆排干有机土 CO2 (1) 根据土地利用类别,气候区,泥炭地养分情况,计量地上部,地下部,枯死木,凋落物,土壤有机质,木材产品碳库变化;(2)生物质燃烧(除土壤有机碳库) (1)根据土地利用类别、气候区、落干级别、养分情况,更新了土壤有机碳库变化的排放因子;新增了由于DOC损失造成的离位CO2排放;(2)新增了生物质燃烧造成的土壤有机碳库变化
CH4 - 根据土地利用类别、气候区、落干级别、养分情况,新增了落干有机土CH4排放和排水沟的离位CH4排放
N2O 管理土壤的N2O排放 根据土地利用类别、气候区、落干级别、养分情况,更新了N2O排放因子
还湿有机土 CO2 - 根据气候区和极地区养分状况,开发了CO2排放/清除和离位DOC排放的计量方法
CH4 - 根据气候区和极地和温带的养分状况,开发了CH4排放计量方法
N2O - 只在高层次的方法中考虑N2O的排放
沿海湿地 CO2 - 根据气候区、植被类型、盐度和管理活动,开发了红树林管理、采掘、还湿、植被重建、新建湿地以及红树林和潮泛沼泽落干管理下CO2排放/清除计量方法
CH4 - 根据湿地类别和盐度,开发了还湿红树林和潮泛沼泽的CH4排放
N2O - 根据鱼类产量,开发了水产养殖N2O排放的计量方法
内陆湿地矿质土壤 CO2 根据土地利用类别和气候区,考虑了土壤有机碳库变化 根据气候区和管理活动,更新了土壤有机碳库参考值;并根据气候区和湿度情况,新增了长期耕作和还湿活动下农田碳库变化因子
CH4 - 根据气候区,开发了还湿和新建湿地的CH4排放计量方法
N2O - -
污水处理人工湿地 CO2 土地利用变化下碳库变化的计量直接参考一般性方法学;未给出专门的方法学 土地利用变化下碳库变化的计量直接参考IPCC 2006中一般性方法学;未给出专门的方法学
CH4 根据废水类别、BOD/COD、处理方法,考虑了CH4和N2O排放 根据废水类别、BOD/COD、人工和半自然湿地处理方法、水流方式,考虑了人工和半自然湿地的CH4和N2O排放
N2O
[1] IPCC. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands[C]//Hiraishi T, Krug T, Tanabe K, et al, eds.Switzerland. Georgia: Batumi, 2014.
[2] IPCC. IPCC expert meeting on HWP, wetlands soil N2O[C]//Eggleston H S, Srivastava N, Tanabe K, et al, eds. Meeting Report of the IPCC Expert Meeting on HWP, Wetlands and Soil N2O. Japan: IGES,2011.
[3] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[C]//Eggleston H S, Buendia L, Miwa K, et al, eds. Prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES, 2006.
[4] Hyvnen N P, Huttunen J T, Shurpali N J, et al. The role of drainage ditches in greenhouse gas emissions and surface leaching losses from a cutaway peatland cultivated with a perennial bioenergy crop[J]. Boreal Environment Research, 2013, 18: 109-126.
[5] Petersen S O, Hoffmann C C, Schafer C M, et al. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture[J]. Biogeoscience, 2012, 9: 403-422.
[6] Jones T, Jones D, Evans C. Conversion of waterborne DOC to CO2-results of laboratory experiments[M]∥Emissions of Greenhouse Gases Associated with Peatland Drainage Waters. Report to the Department of Environment. Food and Rural Affairs, UK, 2013.
[7] Jacobs C M J, Moors E J, van der Bolt, et al. Water Linked to Greenhouse Gas Emissions in the Peatland Area by ROC Zegveld[R]. Alterra-Report 840. Alterra, Wageningen, The Netherlands in Dutch, 2003.
[8] Teh Y A, Silver W L, Sonnentag O, et al. Large greenhouse gas emissions from a temperate peatland pasture[J]. Ecosystems, 2011, 14: 311-325.
[9] van Beek C L, Pleijter M, Jacobs C M J, et al. Emissions of N2O from fertilized and grazed grassland on organic soil in relation to groundwater level[J]. Nutrient Cycling in Agroecosystems, 2010, 86: 331-340.
[10] Kroon P S, Schrier-Uijl A P, Hensen A, et al. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements[J]. European Journal of Soil Science, 2010, 61: 773-784.
[11] Lohila A, Minkkinen K, Aurela M, et al. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink[J]. Biogeosciences Discussions, 2011,8: 5787-5 825.
[12] Jauhiainen J, Silvennoinen H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces[J]. Suo, 2012,63: 93-105.
[13] Armstrong A, Holden J, Kay P, et al. The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water: Results from a national survey[J]. Journal of Hydrology, 2010,381(1/2): 112-120.
[14] Strack M, Zuback Y C A. Annual carbon balance of a peatland 10 yr following restoration[J]. Biogeosciences, 2013, 10(5): 2 885-2896.
[15] Turner E K, Worrall F, Burt T P. The effect of drain blocking on the Dissolved Organic Carbon (DOC) budget of an upland peat catchment in the UK[J]. Journal of Hydrology, 2013,479: 169-179.
[16] Nagata O, Yazaki T, Yanai Y. Nitrous oxide emissions from drained and mineral soil-dressed peatland in central Hokkaido, Japan[J]. Journal of Agricultural Meteorology, 2010, 66: 23-30.
[17] Donato D C, Kauffman J B, Murdiyarso D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011,4(5): 293-297.
[18] Pendleton L, Donato D C, Murray B C, et al. Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. Plos One, 2012,7(9): e43542.
[19] Fourqurean J W, Duarte C M, Kennedy H, et al. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 2012, 5(7): 505-509.
[20] Hu Z, Lee J W, Chandran K, et al. Nitrous oxide (N2O) emission from aquaculture: A review[J]. Environmental Science & Technology, 2012,46(12): 6 470-6 480.
[21] Poffenbarger H J, Needelman B A, Megonigal J P. Salinity influence on methane emissions from tidal marshes[J]. Wetlands, 2011, 31(5): 831-842.
[22] Badiou P, Mc Dougal R, Pennock D, et al. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region[J]. Wetlands Ecology and Management, 2011,19(3): 237-256.
[23] Soosaar K, Mander , Maddison M, et al. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests[J]. Ecological Engineering, 2011,37: 40-53.
[24] Salm J O, Maddison M, Tammik S, et al. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia[J]. Hydrobiologia, 2012, 692: 41-55.
[25] Wu J, Zhang J, Jia W, et al. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands[J]. Frontier Environmental Science Engineering in China, 2009, 3(2): 241-247.
[26] Xinhuanet. Lost of 3.39 Mha in China’s Wetland Area in the Latest 10 Year[EB/OL].(2004-07-20)[2014-07-21].
.[我国湿地面积比十年前减少339万公顷[EB/OL].新华网.(2004-07-20)[<date-in-citation content-type="access-date">2014-07-21</date-in-citation>]..]
URL    
[27] Niu Zhenguo, Zhang Haiying, Wang Xianwei, et al. Mapping wetland changes in China between 1978 and 2008[J]. Chinese Science Bulletin, 2012, 57(16): 1400-1411.
[牛振国, 张海英, 王显威, 等. 1978—2008年中国湿地类型变化[J]. 科学通报, 2012, 57(16): 1400-1411.]
[28] Zhao Hongmei, Yu Xiaqofei, Wang Jian, et al. Effect of fire on wetland ecosystems—A review[J]. Advances in Earth Science, 2010, 25(4): 374-380.
[赵红梅,于晓菲,王健,等. 火烧对湿地生态系统影响研究进展[J]. 地球科学进展, 2010, 25(4): 374-380.]
[29] Zhao Ji, Li Jingyu, Zhou Yu, et al. Methane and ammonia-oxidation microorganisms and their coupling functions[J].Advances in Earth Science, 2012, 27(6): 651-659.
[赵吉,李靖宇,周玉,等.甲烷氧化与氨氧化微生物及其耦合功能[J].地球科学进展, 2012, 27(6): 651-659.]
[30] Fan Wei, Zhang Guangxin, Li Ranran. Review of groundwater-surface water interactions in wetland[J].Advances in Earth Science, 2012, 27(4): 413-423.
[范伟,章光新,李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展, 2012, 27(4): 413-423.]
[1] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[2] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[3] 安正韬, WeiYongping. 澳大利亚湿地水环境管理和技术的有机结合[J]. 地球科学进展, 2016, 31(2): 213-224.
[4] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[5] 范伟,章光新,李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展, 2012, 27(4): 413-423.
[6] 赵红梅,于晓菲,王健,王国平. 火烧对湿地生态系统影响研究进展[J]. 地球科学进展, 2010, 25(4): 374-380.
[7] 邓伟,白军红,胡金明,李爱农. 黄淮海湿地系统分类体系构建[J]. 地球科学进展, 2010, 25(10): 1023-1030.
[8] 王健,赵红梅,徐大伟,于晓菲,吕宪国,王国平. 湿地生态系统中的多环芳烃研究进展[J]. 地球科学进展, 2009, 24(8): 936-941.
[9] 张祥霖,石盛莉,潘根兴,李恋卿,张旭辉,李志鹏. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 2008, 23(9): 974-981.
[10] 赵同谦,张华,徐华山,贺玉晓. 黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究[J]. 地球科学进展, 2008, 23(6): 638-643.
[11] 张永民,赵士洞,郭荣朝. 全球湿地的状况、未来情景与可持续管理对策[J]. 地球科学进展, 2008, 23(4): 415-420.
[12] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[13] 胡巍巍,王根绪. 湿地景观格局与生态过程研究进展[J]. 地球科学进展, 2007, 22(9): 969-975.
[14] 邓伟. 湿地水空间效应[J]. 地球科学进展, 2007, 22(7): 725-729.
[15] 李 华,杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583-591.
阅读次数
全文


摘要