地球科学进展 ›› 1998, Vol. 13 ›› Issue (3): 217 -224. doi: 10.11867/j.issn.1001-8166.1998.03.0217

干旱气候变化与可持续发展    下一篇

地球轨道旋回沉积节律研究进展——兼论轨道旋回的沉积学特征、年代学意义和研究方法
柳永清   
  1. 中国科学院地质研究所 北京 100029
  • 收稿日期:1997-04-11 修回日期:1997-11-15 出版日期:1998-06-01
  • 通讯作者: 柳永清

ADVANCES IN THE RESEARCH ON ORBITAL FORCING SEDIMENTARY RHYTHM—A DISCUSSION ON THE IMPLICATIONS TO SEDIMENTOLOGY, CHRONOLOGY AND STUDYING METHODS

Liu Yongqing   

  1. Geology Institute, CAS, Beijing 100029
  • Received:1997-04-11 Revised:1997-11-15 Online:1998-06-01 Published:1998-06-01

地球轨道旋回是古代沉积记录中常见的由地球轨道参数变动控制的沉积节律,它不仅自身表现显著的节律性,而且通过反馈体系强烈影响着沉积作用。同时,轨道旋回节律在不同的沉积背景下以不同的沉积特征显现和规则性叠加。地球轨道旋回赋有的规则频率变化特征又使其具有年代学意义和应用价值,它是天文地质学、地层学及沉积学研究的重点内容。根据国内外资料综述了这些方面的研究进展,并探讨了地球轨道旋回的研究方法。

The orbital forcing cycles, i.e., Milankovitch cycles, are common sedimentary rhythms presented within the ancient deposits, which is key subjects in astrogeology,stratigraphy and sedimentology. Since 19th century, a cyclicity orrhythm of eccentricity,obliquity and precession of Earth orbital paths has been discovered and widely discussed by the researchers all the world. A mechanics of orbital forcing climate cycle, which has a strong effect on depositional sequences through the albedo systems, was focused in a variety of case studies from Quaternary to Precambrian records. The orbital cycles not only display a rhythm itself, but also control depositional stacked patterns, i.e., sedimentary rhythms, from deep sea to tidal settings. Since orbital forcing cycles are characterized by a variation of frequency they have an implication of chronology and give a high resolution durations of stratigraphy, depositional sequences, geological events and biota zones etc. This paper gives a general reviews of the advances in research on orbital cycles, and an approach to the study, including mathem tics and geology based on the studies abroad and home.

中图分类号: 

[1] Einsele G, Ricken W, eds. Cycles and Events in Stratigraphy. Spinger-Verlag, 1991.
[2] Schwarzacher W. Cyclostratigraphy and the Milankovitch Theory. Elsevier, 1993.
[3] 徐道一. 天文地质学概论. 北京: 地质出版社, 1983.
[4] Berger A.Milankovitch theory and climate. Rev Geophys, 1988, 26:624~657.
[5] Berger A. Pre-Quaternary Milankovitch frequencies.Nature,1989,342(9):133.
[6] Einsele,Seilacher,eds.Cyclic and Event Stratification.Spinger-Verlag,1982.
[7] 刘承祚. 全球变化过程的数学模拟和定量预测. 第四纪地质,1993,(2):97~107.
[8] Berger A. Influence of the changing lunar orbit on the astronomical frequencies of Pre-Quaternary Insolation patterns.Paleoceanography, 1989, 4(5): 555~564.
[9] Research on Cretaceous Cycles Group. Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: Varying sedimentary response to climatic forcing. Geology, 1986, 14:153~156.
[10] Fischer A G. Albian pelagic rhythms(Piobbico core). Journal of Sedimentary Petrology, 1991, 61(7):1 164~1 172.
[11] Fischer A G.Cyclostratigraphy of Cretaceous chalk-marl sequences. In:Caldwell W G E,ed.Evolution of the Western Interior Basin.Geological Association of Canada.Special Paper 39, 1993. 283~295.
[12] Weedon G P. The recognition and stragraphic implications of orbital-forcing of climate and sedimentary cycles. In: Paul Wright, ed. Sedimentary Review/1.Oxford:Blackwell Scientific Publications, 1993.
[13] Williams George E. Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician-Early Silurian glaciation, Canning Basin, Western Australia. Earth and Planetary Science Letters, 1991, 103:143~155.
[14] Goldhammer P K, Lemann P J, Dunn P A. The origin of high-frequency platform carbonate cycles and third-order sequences. Jour Sedim Petro, 1993, 63(3): 318~359.
[15] Goldhammer P K,Dunn P A, Hardie L A.High-frequency(sci) glacio-eustatic sea-level oscillation with Milankovitch characteristics recorded in Mid-Triassic platform carbonates in Northern Italy.American Journal of Science, 1987, 277: 853~892.
[16] Osleger D A, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA. Journal of Sedimentary Petrology, 1991, 61:1 225~1 252.
[17] Goldhammer P K, Osleger D A. Depositional cycles, composite sea-level changes, cycle stacking patterns and the hierarchy of stratigraphic forcing: Example from Alpins Triassic platform carbonatea. Geol Soc Am Bull, 1990, 102: 535~552.
[18] Wang H Z, Shi X Y. A scheme of the hierarchy for sequence stratigraphy. Journal of China University of Geo-sciences, 1996, 7(1): 1~12.
[19] Ge M,Liu Y Q,Meng X H.Field trip T313 guidebook of the 30th International Geological Congress:The depositional sequences and the evolutionary history of the North China carbonate platform of early Paleozoic. Geological Publishing House, 1996.
[20] Meng X H, Liu Y Q, Ge M. Field trip T224 guidebook of the 30th International Geological Congress: The Cambrian deposition facies, sequence stratigraphy, and the high-frequency cyclic sequences of the carbonate platform at the Western Hills. Geological Publishing House, 1996.
[21] Meng X H, Ge M, Chief eds; Liu Y Q Assi ed. Sinian-Ordovician paleogeography, cyclity-rhythm and sedimentary events of China. International Academic Publishers, 1996.
[22] Meng X H,Ge M,Liu Y Q,et al.A study on sea-level fluctuation geodynamics of carbonate depositional cycles in the North China platform. Acta Sedimentologica Sinica, 1996, 14(2): 29~40.
[23] Liu B.30th IGC Abstract 2/3.Beijing,China,1996.
[24] 王立峰. 冀中中奥陶统高频率旋回层序基本特征. 岩相古地理,1994,14(6):49~58.
[25] 殷鸿福. 二叠—三叠系研究进展. 地球科学进展, 1994, 9(2):1~8.
[26] 张克信. 浙江长兴二叠—三叠系界线剖面层序地层研究. 地质学报, 1996, 70(3): 270~281.
[27] 陆元法编译. 旋回地层学. 岩相古地理, 1989, (1): 35.
[28] 陆元法编译. 旋回地层学. 岩相古地理, 1991, (1): 50~61.
[29] Heckel P H. Sea-level curve for Pennsylvanian eustatic marine transgress ive-regressive depositional cycles along mid-continent outcrop belt, North America. Geology, 1986, 14: 330~334.
[30] Heckel P H. Evidence for global(glacial-eustatic) control over upper carboniferous(Pennsylvanian) cyclothems in midcontinent North America. In: Hardman R F P, Brooks J, eds. Tectonic events responsible for Britain's oil and gas reserves. Geol Soc London: Spec Publ, 1990, 55: 35~47.
[31] House M R.A new approach to a absolute time scale from measurements of orbital cycle and sedimentary microrhythms. Nature, 1985, 316: 721~725.
[32] Trendall A F. Varve cycle in the Weeli Wolli formation of the Precambrian hamersley group,Western Austrilia.Economic Geology, 1973, 68(7): 1 089~1 097.
[33] Timothy D H, Steven H L D. Precessional climate cyclocity in Late Cretaceous-Early Tertiary marine sediments:a high resolution chronometer of Cretaceous-Tertiary boundary events.Earth and Planetary Science Letters, 1990, 99: 263~275.
[34] Antoinette S. Orbital forcing of calcilutite-marly cycles in southeast Spain and an estimate for the duration of the Berriasian stage. Geological Society of America Bulletin, 1993, 105: 807~818.
[35] Cecil C B. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 1990, 18: 533~536.
[36] Connolly W M. Interbasinal cyclostratigraphic correlation of Milankovitch band trangressive-regressive cycles: Correlation of Desmoinesian-Missourian strata between southeastern Arizona and the midcontinent of North America. Geology, 1992, 20: 999~1002.
[37] Algeo T J. Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation.J Geol, 1989, 96: 313~322.
[38] 柳永清, 宋立衡. 影响沉积盆地相对海平面的多重因素和旋回层序响应. 岩相古地理, 1997, 17(1) .
[39] 柳永清, 李寅, 刘晓文. 层序地层、旋回地层与多重地层划分——以京西冀北下古生界为例. 中国区域地质, 1997, 16(1): 81~88.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[3] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[4] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[5] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[6] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[7] 郭荣涛. 硅质碎屑岩中的微生物席相关构造——联接现代与过去的纽带[J]. 地球科学进展, 2013, 28(4): 467-476.
[8] 汪正江,许效松,杜秋定,杨菲,邓奇,伍皓,周小琳. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展, 2013, 28(4): 477-489.
[9] 徐争启,程发贵,唐纯勇,宋 昊,张成江,倪师军,郭景腾,祁家明. 广西大新地区辉绿岩地质地球化学、年代学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1080-1086.
[10] 梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展, 2011, 26(6): 586-597.
[11] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[12] 宋孝玉,李亚娟,蒋俊,马玉霞. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展, 2008, 23(6): 613-618.
[13] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[14] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
[15] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
阅读次数
全文


摘要