Please wait a minute...
img img
高级检索
地球科学进展  1998, Vol. 13 Issue (3): 300-305    DOI: 10.11867/j.issn.1001-8166.1998.03.0300
干旱气候变化与可持续发展     
第四纪孢粉分析的时间序列与空间模型
郑卓
中山大学地球科学系 广州 510275
QUATERNARY PALYNOLOGICAL TIME SERIES AND SPATIAL PATTERNS
Zheng Zhuo
Department of Earth Sciences, Zhongshan University, Guangzhou 510275
 全文: PDF(203 KB)  
摘要:

论述了第四纪孢粉时间序列和孢粉空间模型在不同尺度上的时空代表性,同时介绍了一些相关的研究方法和主要成果。利用数理统计方法来定量恢复古气候已成为目前第四纪孢粉时间序列研究的一个发展趋势。各种尺度的第四纪孢粉空间模型图可以反映植被对第四纪气候变化的响应。根据孢粉数据与气候变量之间的函数关系还可换算成古气候图。此外,在全球气候模拟和植被模拟中,孢粉数据成为必不可少的诊断工具。

关键词: 孢粉分析第四纪时间序列空间模型高分辨率气候—植被模拟    
Abstract:

    Quaternary palynological time series and spatial patterns of different scale hierarchies are discussed in this paper. Some related methods and principal results are also introduced. The palynological studies today in the world, including those of million year duration down to those of less than hundred years, may represent various characteristics of environmental change. Applications of transfer functions and other statistic methods to reconstruct the paleoclimate flucturations is being a trend of pollen sequence analysis.
    The restoration of the Quaternary spatial distribution of vegetation of different scales is so call Quaternary pollen spatial pattern. This pattern reflect the spatial response of vegetation or pollen types to the Quaternary  climate changes. The quantitative climate calibration from pollen record can also help to establish the spatial paleoclimate characters. Additionally, pollen data is recently a diagnostic tool to validate climate and biome models of global scale.

Key words: Pollen analysis    Quaternary    Time series    Spatial patterns    High resolution    Climate-biome modeling.
收稿日期: 1997-05-28 出版日期: 1998-06-01
:  Q913.84  
基金资助:

国家自然科学基金项目“雷琼地区湖相晚第四纪孢粉分析及定量古环境研究”(项目编号:49671074)资助。

通讯作者: 郑卓   
作者简介: 郑卓, 男, 1956 年 10月出生, 副教授, 主要从事第四纪孢粉与古环境研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑卓. 第四纪孢粉分析的时间序列与空间模型[J]. 地球科学进展, 1998, 13(3): 300-305.

Zheng Zhuo. QUATERNARY PALYNOLOGICAL TIME SERIES AND SPATIAL PATTERNS. Advances in Earth Science, 1998, 13(3): 300-305.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1998.03.0300        http://www.adearth.ac.cn/CN/Y1998/V13/I3/300

[1] Delcourt H R,Delcourt P A.Late Quaternary vegetational history of the central Atlantic states.In: The Quaternary of Virginia. Virginia Commonwealth Division of Mineral Resources, 1986. 23~35.
[2] Imbrie J, Kipp N G. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In: Turekian K. The Late Cenozoic Glacial Age. New Haven: Yale Univ Press, 1971. 71~181.
[3] Webb T Ⅲ, Bryson R A.Late and post glacial change in the northern Midwest,USA:quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research, 1972, 2: 70~115.
[4] Guiot J. Methodology of paleoclimatic reconstruction from pollen in France. Palaeogeogr Palaeoclimat Palaeoecol,1990, 80: 49~69.
[5] Huntley B. Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13 000 years.Quaternary Research, 1990, 33: 360~376.
[6] Prentice I C.Vegetation responses to past climate variation. Vegetatio, 1986, 67: 131~141.
[7] Webb R S, Anderson K H, Webb T Ⅲ. Pollen response surface estimate of Late Quaternary changes in the moisture balance of the northeastern United States. Quaternary Research, 1993, 40: 213~227.
[8] Prentice I C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate.Journal of Biogeography, 1992, 19: 117~134.
[9] Noblet N. Modelling late-Quaternary paleoclimates and paleobiomes. In:Guntley B, et al. Past and future rapid environmentl changes: The spatial and evolutionary responses of terrestrial Biota. Berlin: Springer-Verlag, 1997. 31~52.
[10] Claussen M,Esch M.Biomes computed from simulated climatologies. Climate Dynamics, 1994, 9: 235~244.
[11] Webb T Ⅲ. Constructing the past from late Quaternary pollen data: temporal resolution and a zoom lens space-time perspective. In: Wright Jr, et al. Taphonomic approaches to time resolution in fossil assemblages. Univ Tennessee Knoxvill T N, 1993. 79~101.
[12] Miller K G, Fairbanks R G,Mountain G S.Tertiary oxygen isotop synthesis, sea level history,and continental margin erosion. Palaeoceanography, 1987, 2:1~19.
[13] Suc J P, Clauson C, Bessedik M, et al. Neogene and lower Pleistocene in southern France and northeastern Spain.Mediterranean environment and climate.Cahiers de Micropaleontologie, 1992, 7(1/2): 165~186.
[14] Hooghiamstra H.Vegetational and climatic history of the high plain of Bogota,Colombia:A continuous record of the last 3. 5 million years. In: Berger A, et al. Milankovitch and Climate(Part I). Dordrecht: D Reidel Publ Co, 1984. 371~378.
[15] Webb P N, Harwood D M. Pliocen fossil Nothfagus (southern beech ) from Antarctical phytogeography, dispersal strategies,and survival in high latitude glacial-deglacial environments.In:Alden J,et al.Forest development in cold climates.New York:Plenum Press, 1993. 135~165.
[16] Mommersteeg H J P M, Loutre M F, Young R, et al. Orbital forced frequences in the 975 000 year pollen record from Tenagi Philippon(Greece). Climate Dynamics, 1995, 11(1): 4~24.
[17] 郑卓, 雷作淇. 雷州半岛近40万年来的古植被与古生态: 田洋湖钻孔孢粉数值分析. 中山大学学报, 1992, (1) : 124~137.
[18] Webb T Ⅲ.Spatial response of plant taxa to climate change:A palaeoecological perspective.In:Huntley B,et al.Past and future rapid environmental changes: the spatial and evolutionary responses of terrestrial Biota. Berlin: Springer-Verlag, 1997. 55~72.
[19] Guiot J, Pons A, Beaulieu J L, et al. A 140 000 year climatic resconstruction from two european pollen records. Nature, 1989, 338: 309~313.
[20] Webb T Ⅲ, Bartlein P J,Harrison S P,et al.Vegetation, lake level and climate in eastern North America for the past 18 000 years. In: Wright H E, et al. Global climates since the last Glacial Maximum. London: Univ of Minnesota  Press,1993. 415~467.
[21] Kutzbach J, Guetter P J, Behling P, et al. Simulated climate changes. In: Wright H E, et al. Global Climate since the Last Glacial Maximum. Minneapolis:University of Minnesota Press, 1993. 24~93.

[1] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[2] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[3] 唐彦丽, 董文杰, 李立娟, 薛巍, 王斌. CPL7及其在中国地球系统模式中的应用前景[J]. 地球科学进展, 2015, 30(5): 620-625.
[4] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[5] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[6] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[7] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[8] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[9] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[10] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[11] 刘伟男,王汝建,陈建芳,程振波,陈志华,孙烨忱. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展, 2012, 27(2): 209-216.
[12] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[13] 姚玉鹏,刘羽. 第四纪作为地质年代和地层单位的国际争议与最终确立[J]. 地球科学进展, 2010, 25(7): 775-781.
[14] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[15] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.