地球科学进展 ›› 2012, Vol. 27 ›› Issue (2): 246 -254. doi: 10.11867/j.issn.1001-8166.2012.02.0246

生态学研究 上一篇    

中国陆地生态系统碳收支集成研究的e-Science 系统构建
何洪林 1,张黎 1, 黎建辉 2, 周园春 2,任小丽 1,3,于贵瑞 1   
  1. 1.中国科学院地理科学与资源研究所,生态系统网络观测与模拟重点实验室,北京 100101;
    2.中国科学院计算机网络信息中心,科学数据中心,北京 100190; 
    3.中国科学院研究生院,北京 100049
  • 收稿日期:2011-04-21 修回日期:2011-11-17 出版日期:2012-02-10
  • 通讯作者: 何洪林(1971-),男,湖南冷水江人,副研究员,主要从事生态信息学、遥感与地理信息系统应用、生态系统碳循环研究. E-mail:hehl@igsnrr.ac.cn
  • 基金资助:

    中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”(编号:XDA05050600);国家重点基础研究发展计划项目“中国陆地生态系统碳—氮—水通量的相互关系及其环境影响机制”(编号:2010CB833500);中国科学院信息化专项项目“服务于生态系统碳收支集成研究的e-Science环境建设及应用示范”(编号:INFO-115-D06)资助.

E-Science System for Carbon Budget Integration Research of Chinese Terrestrial Ecosystem

He Honglin 1, Zhang Li 1, Li Jianhui 2, Zhou Yuanchun 2, Ren Xiaoli 1, 3, Yu Guirui 1   

  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2.Center of Scientific Database, Computer Network Information Center, Chinese Academy of Sciences,Beijing 100190,China; 3.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-04-21 Revised:2011-11-17 Online:2012-02-10 Published:2012-02-10

全球/区域生态系统碳循环研究具有多台站联网观测、多源异构数据、多模型综合分析、跨领域科学家协同工作等特点。以中国陆地生态系统通量观测研究网络(ChinaFLUX)为基础平台,论述建立碳循环科研信息化环境(e-Carbon Science)的迫切性,系统阐述eCarbon Science的目标、组成、关键技术及研究进展,构建了由“四环境(碳循环数据集成与服务环境、模型模拟环境、可视化分析环境、科研协同工作环境)、三系统(站点、区域、全国尺度陆地生态系统碳收支评估应用系统)”组成的ChinaFLUX e-Carbon Science,形成ChinaFLUX通量数据采集—传输—存储—管理—处理—可视化—共享服务的一体化系统,实现不同尺度的碳收支快速评估与模拟,支撑并促进我国陆地生态系统碳循环研究和生态信息学发展,对我国野外台站网络信息化起到引领和示范作用。

Global and regional ecosystem carbon cycle research is characterized by multi-stations observation networks, multi-sources data with heterogeneous structure, multi-models meta-analysis, and collaboration of scientists across different disciplines. Based on the Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX), we proposed an e-Carbon Science with its goals, components, and key techniques and reported current progress. ChinaFLUX e-carbon science consists of four environments (the carbon cycle data integration and service environment, the model simulating environment, the visual analysis environment, and the collaborative scientific research environment) and three application systems (terrestrial carbon budget assessment system at local, regional, and national scales). We developed an integration system of flux data acquisition-transportationstoragemanagement-processing-visualization-service sharing. ChinaFLUX e-carbon science made rapid carbon budget assessment and simulation possible, promoted the development of terrestrial ecosystem carbon cycle research and eco-informatics in China, and played an exemplary role in constructing the informatization of field station networks.

中图分类号: 

[1]Yu Guirui, Wen Xuefa, Sun Xiaomin, et al. Overview of China Flux and evaluation of its eddy covariance measurement[J].Agricultural and Forest Meteorology,2006, 137(3/4):125-137.
[2]Yu Guirui, Sun Xiaomin. Principles of Flux Measurement in Terrestrial Ecosytems[M]. Beijing: Higher Education Press,2006.[于贵瑞,孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京: 高等教育出版社, 2006.]
[3]Hey A J G, Tansley S, Tolle K M. The Fourth Paradigm: Data-Intensive Scientific Discovery[J/OL].http:research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf,2009.
[4]Rich P M, Keating G  N, Riggs T L, et al.  A Vision for Carbon Cyberinfrastructure[EB/OL]. http:www.bigskyco2.org/presentations/chapman-cyberinfrastructure-18jan05.ppt,2007.
[5]Thornton P E. Biome-BGC: Modeling Effects of Disturbance and Climate Model Product[DB/OL]. Available on-line[http:www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A,2005.
[6]Agarwal D, Humphrey M, Beekwilder N, et al. A data-centered collaboration portal to support global carbon-flux analysis[J].Concurrency and Computation: Practice & Experience,2010,22(17):2 323-2 334.
[7]Hamerlinck J D, Wyckoff T B, Oakleaf J R, et al. Cyberinfrastructure for collaborative geologic carbon sequestration research: A conceptual model[J].Rocky Mountain Geology,2010, 45(2): 163-180. 
[8]Yu Guirui, He Honglin, Li Jianhui. Study on the e-Science environment for carbon budget integration research of Chinese terrestrial ecosystem[J].e-Science Technology & Application,2009, 5: 21-31.[于贵瑞, 何洪林, 黎建辉. 中国陆地生态系统碳收支集成研究的e-Science环境建设探讨[J]. 科研信息化技术与应用, 2009, 5: 21-31.] 
[9]Creare Inc: RBNB Data Turbine[EB/OL].http:www.creare.com/rbnb/index.html,2011.
[10]Cepicky J. Py WPS homepage[EB/OL].http:pywps.wald.intevation.org/,2009.
[11]Pullen J M, Brunton R, Brutzman D, et al. Using Web services to integrate heterogeneous simulations in a grid environment [J].Future Generation Computer Systems,2005, 21(1): 97-106.
[12]Yu Guirui, Sun Xiaomin. Flux Measurement and Research of Terrestrial Ecosystem in China[M].Beijing: Science Press,2008.[于贵瑞,孙晓敏.中国陆地生态系统的碳通量观测技术及其时空变化特征[M]. 北京: 科学出版社, 2008.]
[13]Liu Min, He Honglin, Sun Xiaomin, et al. Scientific workflow approach (Kepler) for carbon flux data processing[C]2009 Second International Conference on Intelligent Computation Technology and Automation,2009: 694-697.
[14]Li Chun, He Honglin, Liu Min, et al. The design and application of CO2 Flux data processing system at ChinaFLUX[J].Geo-Information Science,2008, 10(5): 854-864.[李春, 何洪林, 刘敏,等. ChinaFLUX CO2通量数据处理系统与应用[J].地球信息科学, 2008, 10(5): 854-864.]
[15]Richardson A D, Jenkins J P, Braswell B H, et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest[J].Oecologia,2007, 152(2): 323-334.
[16]White M A, Nemani R R. Real-time monitoring and short-term forecasting of land surface phenology[J].Remote Sensing of Environment,2006, 104(1): 43-49.
[17]Ahrends H E, Brugger R, Stockli R, et al. Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography[J].Journal of Geophysical Research-Biogeosciences,2008, 113(G04004): 1-11.
[18]Crimmins M A, Crimmins T M. Monitoring plant phenology using digital repeat photography[J].Environmental Management,2008, 41(6): 949-958.
[19]Xiao Xiangming, Zhang Qingyuan, Hollinger D, et al. Modeling gross primary production of an evergreen needle leaf forest using MODIS and climate data[J].Ecological Applications,2005, 15: 954-969.
[20]Cao Mingkui, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature,1998,393:249-252.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[3] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[4] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[5] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[6] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[7] 牛栋,李正泉,于贵瑞. 陆地生态系统与全球变化的联网观测研究进展[J]. 地球科学进展, 2006, 21(11): 1199-1206.
[8] 傅伯杰;牛栋;赵士洞. 全球变化与陆地生态系统研究:回顾与展望[J]. 地球科学进展, 2005, 20(5): 556-560.
[9] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[10] 于贵瑞;王秋凤;于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
[11] 李晓兵,陈云浩,张云霞,范一大,周涛,谢锋. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261.
[12] 杨昕,王明星. 陆面碳循环研究中若干问题的评述[J]. 地球科学进展, 2001, 16(3): 427-435.
[13] 曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展, 2000, 15(4): 446-452.
[14] 陈庆强,沈承德,易惟熙,彭少麟,李志安. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-563.
阅读次数
全文


摘要