地球科学进展 ›› 2002, Vol. 17 ›› Issue (6): 811 -817. doi: 10.11867/j.issn.1001-8166.2002.06.0811

学术论文 上一篇    下一篇

两大江河流量的半世纪变化与“南水北调”
游性恬,朱禾   
  1. 中国气象局培训中心,北京 100081
  • 收稿日期:2002-01-18 修回日期:2002-06-24 出版日期:2002-12-20
  • 通讯作者: 游性恬(1940-),女,江西赣州市人,教授,主要从事数值天气预报及气候变化研究.E-mail:ytjiang@163.com E-mail:ytjiang@163.com
  • 基金资助:

    国家自然科学基金项目“中国中东部重大洪旱出现规律及其对水资源的影响”(编号:49975017)资助.

THE DISCHARGE VARAIATION IN THE TWO MAIN RIVERS OF CHINA DURING THE RECENT HALF CENTURY AND THE RELATIONSHIP WITH THE SOUTH-TO-NORTH WATER TRANSFER PROJECT

YOU  Xing-tian, ZHU  He   

  1. Chinese Meteorological Administration Training Center, Beijing 100081, China
  • Received:2002-01-18 Revised:2002-06-24 Online:2002-12-20 Published:2002-12-01

根据最近50余年资料研讨黄河、长江月平均流量的特征,揭示其若干演变规律。分析得出:长江中下游多年平均年流量约为黄河的20倍。初夏(6月)时,则接近50倍。黄河的大流量主要集中出现于 7~10月,这4个月平均月流量为全年的14.5%,其它8个月平均为 5.25%;长江流量自 5月起逐渐增加,5~10月平均月流量占全年的12.0%,其它各月平均为4.67%。最近50余年来,黄河中下游流量在1968年以前主要为正距平;1969-1985年基本正常;1986年起一直为负距平;加上人为因素,致使下游流量剧减迅猛,以致90年代以来连年有断流出现。长江中下游流量在1953-1955年为显著正距平;然后缓慢下降;90年代以后回升,1997年以后迅速上升,并出现几次大洪水。总之长江水源比黄河丰富且较稳定,黄河流量近10多年来则是贫瘠且多变。南水北调既是需要又有可能,尤其对解决北方春旱更为有利。

The monthly average discharge variations of Yellow and Yangtze River have been studied from the accumulated data in recent more than 50 years. Some interesting results have been shown that the interannual average discharge in the middle and low reaches of the Yangtze River is about 20 times of that in the Yellow River. The monthly flow of Yangtze River in the early summer (June) is about 50 times of that in the Yellow River. The significant flow of the Yellow River mainly appears from July to October. Comparison with other 8 months, the monthly mean discharge in each of these 4 months is about 14.5% of its total annual discharge, and in each of other 8 months, is only about 5.25%. The river flow of Yangtze River increases from May. The monthly average discharge from May to October is about 12% of its total annual discharge, out of this period, is only about 4.67%. In recent 50 years, the annual discharge anomalies of the lower reaches of the Yellow River was positive before 1968, was about normal from 1969 to 1985 and was negative from 1986. This negative anomalies tendency has been aggravated partly by the human behaviors, especially in the ninety’s, it has resulted in the river flow sharply down and even leaded to interrupt the river flow frequently in the lower reaches of the Yellow River. Comparatively, there were a significant positive anomalies around 1953 to 1955 in the middle and lower reaches of the Yangtze River, after that it slowly decreased, then it was back to increase in the ninety’s. An obvious increase appeared in 1997 to 1999, and was associated with several severe floods in the ninety’s. All the evidences have shown that the Yangtze Rive has more water resource and more stable than the Yellow River. And the water resource in the Yellow River is varied and deficit, especially in the recent decade. So that the South-to-North Water Transfer Project is necessary and is a possible way to solve the water shortage in the North China, especially in the Spring and the early Summer.

中图分类号: 

[1]Sun Anjian, Gao Bo. A diagnostic analyses of serious flood/drought during summer season in the North China plane[J]. Chinese Journal of Atmospheric Sciences, 2000,24(3):393-402.[孙安健,高波. 华北平原地区夏季严重旱涝特征诊断分析[J].大气科学,2000,24(3):393-402.]
[2]Jiang Jianmin, You Xingtian, Gu Xianqian. 1998:The drought background of zero streamflow in the Yellow River in recent years and related suggestions[A]. In:Collection of Papers on the Weather Forecast Technology[C]. Beijing: Meteorology Press, 1999. 187-191.[江剑民,游性恬,谷湘潜. 近年来黄河断流的干旱背景及其对策[A].见:天气预报技术论文集[C].北京:气象出版社,1999. 187-191.]
[3]Chen Lieting. Regional Features of interannual and interdecadal variations in Summer precipitation anomalies over North China[J]. Plaleau Meteorology, 1999, 18(4):477-485.[陈烈庭.华北各区夏季降水年际和年代际变化的地域性特征[J].高原气象,1999,18(4):477-485.]
[4]Huang Ronghui, Xu Yanhong, Zhou Liantong. The interdecadal variation of summer precipitations in China and the drought trend in the North China[J]. Plaleau Meteorology, 1999, 18(4):465-476.[黄荣辉,徐彦红,周连童. 我国夏季降水的年代际变化及华北干旱化趋势[J].高原气象,1999,18(4):465-476.]

[1] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[2] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[5] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[6] 贺鑫, 胡小飞, 潘保田. 黄河兰州段河谷演化研究与认识[J]. 地球科学进展, 2020, 35(4): 404-413.
[7] 康世昌, 郭万钦, 吴通华, 钟歆玥, 陈仁升, 许民, 陈金雷, 杨瑞敏. “一带一路”区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展, 2020, 35(1): 1-17.
[8] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[9] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[10] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[11] 王金平, 曲建升, 马金珠. 基于文献计量的国际虚拟水研究发展态势分析[J]. 地球科学进展, 2018, 33(6): 653-663.
[12] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[13] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[14] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[15] 刘波, 王晓蕾, 康钊菁, 苏腾, 翟东力, 袁靖. 降雨发生装置空间均匀性的研究[J]. 地球科学进展, 2016, 31(8): 820-828.
阅读次数
全文


摘要