地球科学进展 ›› 2010, Vol. 25 ›› Issue (6): 582 -596. doi: 10.11867/j.issn.1001-8166.2010.06.0582

综述与评述 上一篇    下一篇

板块俯冲带研究中的数值实验
李大鹏 1,陈岳龙 1,靳野 2   
  1. 1. 中国地质大学(北京)地球科学与资源学院,北京 100083;
    2. 中国地质大学(北京)海洋学院,北京 100083
  • 收稿日期:2009-09-30 修回日期:2010-04-02 出版日期:2010-06-10
  • 通讯作者: 李大鹏 E-mail:ldpzhuanyong@163.com
  • 基金资助:

    国家自然科学基金项目“青海共和—花石峡碎屑沉积岩地球化学”(编号:40673046)资助

Numerical Simulation in Subduction Zone Study

Li Dapeng 1,Chen Yuelong 1,Jin Ye   

  1. 1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
    2. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China
  • Received:2009-09-30 Revised:2010-04-02 Online:2010-06-10 Published:2010-06-10
  • Contact: Li Dapeng E-mail:ldpzhuanyong@163.com

板块构造是一个复杂的动力学体系,俯冲作为板块间相互作用中最重要的特征之一,长期以来通过各种手段并未完全得以认识。近10年来, 俯冲带数值模型迅速发展,而2D/3D数值实验也取得许多新的认识:地幔柱顶托作用触发俯冲可能存在于行星演化早期;板片脱水形成的薄弱剪切带是导致现今俯冲样式为单向不对称俯冲的主要决定因素;俯冲增生岩浆的化学组成很大程度上取决于俯冲的发展过程,熔体抽离的强度和俯冲板片年龄共同影响新生地壳的体积。

Plate tectonics is a complex dynamic system and subduction is one of the most important features, which, however, has not been completely understood. In the last decade, based on the obtained evidence in geophysics, tectonics, petrology and geochemistry, numerical simulation applied in subduction zone research have achieved many breakthrough contributions. The plume upwelling switched subduction can happened at the juvenile stage of the planet evolution. The weak shear zone that formed by the dehydration of the subduction slab is the dominant impact factor for the one-sided asymmetric subduction pattern. The chemical composition of the subduction magma mainly depends on the subduction evolution processes. Both intensity of the melt extraction and the age of the subdcution slab have influence on the volume of the accreted crust.

中图分类号: 

[1] Turcotte D L, Schubert G. Geodynamics [M]. Cambridge: Cambridge University Press, 2002.
[2] Tackley P J. Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 1. Pseudoplastic yielding [J]. Geochemistry Geophysics Geosystems,2000, 1(8): 1 026.
[3] Mishin Y A, Gerya T V, Burg J, et al. Dynamics of double subduction: Numerical modeling [J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 280-295.
[4] Morra G, Chatelain P, Tackley P, et al. Earth curvature effects on subduction morphology : Modeling subduction in a spherical setting [J]. Acta Geotechnica, 2008,doi: 10.1007/s11440-008-0060-5.
[5] Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacifi c-type convergent margins: Numerical modeling[J].Physics of the Earth and Planetary Interiors, 2007, 163: 209-232.
[6] Nikolaeva K, Gerya T V, Connolly J A D. Numerical modeling of crustal growth in intraoceanic volcanic arc [J]. Physics of the Earth and Planetary Interiors, 2008, 171(1/4): 336-356.
[7] Rene M, Holtz F, Luo C, et al. Biotite stability in peraluminous granitic melts: Compositional dependence and application to the generation of two-mica granites in the South Bohemian botholith (Bohemian Massif, Czech Republic) [J]. Lithos,2008, 102: 538-553.
[8] Hermann J, Spandler C, Hack A, et al. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones [J].Lithos,92: 399-417.
[9] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J].Earth and Planetary Science Letters,1998, 163: 361-379.
[10] Peacock S M,Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J].Earth and Planetary Science Letters,1994, 121: 227-244.
[11] Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines [J].Earth and Planetary Science Letters,2006, 243: 581-593.
[12] Armstrong R L. Isotopic and chemical constraints on modelis of magma genesis in volcanic arcs [J].Earth and Planetary Science Letters,1971, 12: 137-142.[13] Tera F, Brown L, Morris J, et al. Sediment incorporation in islandarc magmas: Inferences from 10Be [J].Geochimica et Cosmochimica Acta,1986, 50: 535-550.
[14] Rosner M, Erzinger J, Franz G, et al. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration [J].Geochemistry Geophysics Geosystems, 2003, 4(8), doi:10. 1029/2002GC000438.
[15] Kelemen P B, Johnson K T M, Kinzler R J, et al. High-field-strength element depletions in arc basalts due to mantle-magma interaction[J].Nature,1990, 345: 521-524.
[16] Kelemen P B, Rilling J L, Parmentier E M, et al. Thermal structure due to solid-state flow in the mantle wedge beneath arcs [J]. AGU Monograph,2003, 138: 293-311.
[17] Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks [J]. Journal of Volcanology and Geothermal Research,1986, 29: 293-309.
[18] Enns A, Becker T W, Schmeling H. The dynamics of subduction and trench migration for viscosity stratification[J].Geophysical Journal International,2005, 160(2): 761-775.
[19] Schmeling H, Babeyko A Y, Enns A, et al. A benchmark comparison of spontaneous subduction models—Towards a free surface [J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 198-223.
[20] Kaus B J P, Becker T W. A Numerical Study on the Effect of Surface Boundary Condition and Rheology on Slab Dynamic[M].Florence: GeoMod2008, 2008.[21] Morra G, Chatelain P, Tackley P, et al. Large scale three-dimensional boundary element simulation of subduction[J].Computational Science-ICCS,2007, 4489: 1 122-1 129. 
[22] Capitanio F A, Morra G, Goes S. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation[J].Earth and Planetary Science Letters,2007, 262: 284-297.
[23] Stegman D R, Freeman J, Schellart W P, et al. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback[J].Geochemistry Geophysics Geosystems,2006, 7, Q03012, doi:10.1029/2005GC001056.
[24] Schellart W P. Kinematics of subduction and subduction-induced flow in the upper mantle [J]. Journal of Geophysical Research, 2004, 109, B07401, doi: 10.1029/2004JB002970.
[25] Funiciello F, Faccenna C, Giardini D, et al. Dynamics of retreating slabs: 2. Insights from 3-D laboratory experiments [J]. Journal of Geophysical Research, 2003, 108(B4): 2207, doi:10.1029/2001JB000896.
[26] Funiciello F, Faccenna C, Giardini D. Role of lateral mantle flow in the evolution of subduction systems: Insights from laboratory experiments[J].Geophysical Journal International, 2004, 157: 1393-1406. doi:10.1111/j.1365-246X.2004.02313.x.
[27] Funiciello F, Moroni M, Piromallo C, et al. Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking [J]. Journal of Geophysical Research, 2006, 111, B03402, doi:10.1029/2005JB003792.
[28] Gurnis M, Hager B H. Controls of the structure of subducted slabs [J]. Nature,1988, 335: 317-321.
[29] Guillou-Frottier L, Buttles J, Olson P. Laboratory experiments on the structure of subducted lithosphere[J]. Earth and Planetary Science Letters,1995, 133: 19-34.
[30] Griffiths R W, Hackney R I, van der Hilst R D. A laboratory investigation of effects of trench migration on the descent of subducted slabs[J].Earth and Planetary Science Letters,1995, 133: 1-17.
[31] Moresi L, Gurnis M. Constraints on the lateral strength of slabs from three-dimensional dynamic flow models[J]. Earth and Planetary Science Letters,1996, 138: 15-28.
[32] Houseman G A, Gubbins D. Deformation of subducted oceanic lithosphere[J].Geophysical Journal International,1997, 131: 535-551.
[33] Conrad C P,Hager B H. Effects of plate bending and fault strength at subduction zones on plate dynamics[J].Journal of Geophysical Research,1999, 104: 17551-17 571.
[34] van Hunen J, van den Berg A P, Vlaar N J. A thermo-mechanical model of horizontal subduction below an overriding plate[J].Earth and Planetary Science Letters,2000, 182: 157-169.
[35] Pysklywec R N, Ishii M. Time dependent subduction dynamics driven by the instability of stagnant slabs in the transition zone[J].Physics of the Earth and Planetary Interiors,2005, 149: 115-132.
[36] Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research [J]. Lithos, 2005, 7: 271-297.
[37] Billen M, Gurnis M, Simons M. Multiscale dynamics of the Tonga-Kermadec subduction zone[J].Geophysical Journal International, 2003, 153: 359-388.
[38] Bellahsen N, Faccenna C, Funiciello F. Dynamics of subduction and plate motion in laboratory experiments: Insights into the plate tectonics'' behavior of the Earth[J].Journal of Geophysical Research,2005, 110, B01401, doi:10.1029/2004JB002999.
[39] Kincaid C, Griffiths R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J].Nature,2003, 425: 58-62.
[40] Kincaid C, Griffiths R W. Variability in flow and temperatures within mantle subduction zones [J].Geochemistry Geophysics Geosystems,2004, 5, Q06002, doi:10.1029/2003GC000666.
[41] Schellart W P, Freeman J, Stegman D R, et al. Evolution and diversity of subduction zones controlled by slab width [J]. Nature, 2007, 446: 308-311. doi:10.1038/nature05615.
[42] Ueda K, Gerya T, Sobolev S V. Subduction initiation by thermal-chemical plumes: Numerical studies[J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 296-312.
[43] Cloetingh S,Wortel R, Vlaar N J. On the initiation of subduction zones[J].Pure and Applied Geophysics,1989, 129: 7-25.
[44] Ogawa M. Perturbation analysis of convective instability of oceanic lithosphere and initiation of subduction[J]. Journal of Geophysical Research, 1990, 95: 409-420.
[45] Mueller S, Phillips R J. On the initiation of subduction [J].Journal of Geophysical Research,1991, 96: 651-665.
[46] Sandwell D T, Schubert G. Evidence for retrograde lithospheric subduction of Venus [J].Science,1992, 257: 770-776.
[47] Kemp D V, Stevenson D J. A tensile, flexural model for the initiation of subduction[J]. Geophysical Journal International,1996, 125: 73-94.
[48] Toth J, Gurnis M. Dynamics of subduction initiation at pre-existing fault zones[J].Journal of Geophysical Research,1998, 103: 18 053-18 067.
[49] Regenauer-Lieb K, Yuen D A, Branlund J. The initiation of subduction: Criticality by addition of water? [J].Science,2001, 294: 578-580.
[50] Solomatov V S. Initiation of subduction by small-scale convection[J]. Journal of Geophysical Research,2004, 109: B05408.
[51] Fowler A C. Boundary layer theory and subduction[J]. Journal of Geophysical Research, 1993, 98: 21 997-22 005.
[52] Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212: 15-30.
[53] Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction[J].Geochemistry Geophysics Geosystems, 2004, 5, Q07001, doi:10.1029/2003GC000681.
[54] Korenaga. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? [J].Journal of Geophysical Research, 2007, 112: B05408.
[55] Regenauer Lieb K, Yuen David A. Fastmechanisms for the formation of new plate boundaries [J]. Tectonophysics,2000, 322(1/2): 53-67.
[56] Branlund J M, Regenauer Lieb K, Yuen D A. Weak zone formation for initiating subduction from thermo-mechanical feedback of low-temperature plasticity [J]. Earth and Planetary Science Letters, 2001, 190: 237-250.
[57] Han L, Gurnis M. How valid are dynamic models of subduction and convection when platemotions are prescribed? [J].Physics of the Earth and Planetary Interiors,1999, 110: 235-246.
[58] Mart Y, Aharonov E, Mulugeta G, et al. Analogue modelling of the initiation of subduction[J].Geophysical Journal International,2005, 160: 1 081-1 091.
[59] Lenardic A,Kaula W M. Self-lubricated mantle convection: Two-dimensional models[J].Geophysics Research Letters,1994, 21: 1 707-1 710.
[60] Gerya T V, Connolly J A D, Yue D A. Why is terrestrial subduction one-sided? [J].Geology, 2008, 36(1): 43-46.
[61] Van der Lee S, Regenauer-Lieb K, Yuen D A. The role of water in connecting past and future episodes of subduction[J].Earth and Planetary Science Letters,2008, doi:10.1016/j.epsl.2008.04.041. 
[62] Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J].Geology,2006, 34: 961-964.
[63] Brown M. Metamorphic conditions in orogenic belts: A record of secular change [J]. International Geology Review,2007, 49: 193-234.
[64] Zhao D P. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics[J].Physics of the Earth and Planetary Interiors, 2004, 146: 3-34.
[65] King S D. Subduction zones: Observations and geodynamic models [J]. Physics of the Earth and Planetary Interiors,2001, 127: 9-24.
[66] Hassani R, Jongmans D, Chery J. Study of plate deformation and stress in subduction processes using two-dimensional numerical models[J].Journal of Geophysical Research,1997, 102: 17 951-17 965.
[67] Sobolev S V, Babeyko A Y. What drives orogeny in the Andes? [J].Geology,2005, 33: 617-620.
[68] Tagawa M, Nakakuki T, Kameyama M, et al. The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction[J]. Pure and Applied Geophysics,2007, 164: 879-907.
[69] Burg J-P. Two orogenic systems and a transform-transfer Fault in the Himalayas: Evidence and consequences[J].Earth Science Frontiers, 2006, 13: 27-46.[70] Burg J-P, Jagoutz O, Dawood H, et al. Precollision tilt of crustal blocks in rifted island arcs: Structural evidence from the Kohistan Arc[J].Tectonics, 2006, 25, TC5005. doi: 10.1029/2005TC001835.
[71] Hall R. Cenozoic plate tectonic reconstructions of SE Asia[J].Geological Society, London Special Publications,1997, 126: 11-23.
[72] Zhang Guibin, Gao Rui, Xiao Xuchang.Modelling of the evolution of Collision Mountain Range across the contact zone between west Kunlun and Tarim[J].Acta  Geoscientia Sinics, 2001, 22(6):541-546.[张贵宾,高锐,肖序常. 横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟[J]. 地球学报, 2001, 22(6):541-546.]
[73] Widiyantoro S, Kennett B L N, van der Hilst R D. Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs[J]. Earth and Planetary Science Letters,1999, 173: 91-100.
[74] Boutelier D, Chemenda A, Burg J-P. Subduction versus accretion of intraoceanic volcanic arcs: Insight from thermo-mechanical analogue experiments[J]. Earth and Planetary Science Letters, 2003, 212: 31-45.
[75] Dewey J F. Episodicity, sequence, and style at convergent plate boundaries [C]// Strangway D W, eds. The Continental Crust and Its Mineral Deposits. Geological Association of Canada, Special Paper, 1980.
[76] Garfunkel Z, Anderson C A, Schubert G. Mantle circulation and the lateral migration of subducted slabs [J]. Journal of Geophysical Research,1986, 91: 7 205-7 223.
[77] Kincaid C, Olson P. An experimental study of subduction and slab migration[J].Journal of Geophysical Research,1987, 92: 13 832-13 840.
[78] Lonergan L, White N. Origin of the Betic-Rif mountain belt[J]. Tectonics, 1997, 16: 504-522.
[79] Schellart W P, Lister G S. Tectonic models for the formation of arc-shaped convergent zones and backarc basins[C]//Sussman A J, Weil A B, eds. Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses. Geological Society of America, Special Paper, 2004, 383: 237-258.
[80] Jacoby W R. Paraffin model experiment of plate tectonics [J]. Tectonophysics,1976, 35: 103-113.
[81] Schellart W P. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge[J].Earth and Planetary Science Letters,2005, 231: 197-219.
[82] Schellart W P. Kinematics and flow pattern in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio[J].Geochemistry, Geophysics, Geosystems,2008, 9(2), Q03014, doi:10.1029/2007GC001 656.
[83] Gerya T V, Stockhert B, Perchuk A L. Exhumation of highpressure metamorphic rocks in a subduction channel: A numerical simulation[J].Tectonics, 2002, 21(6): 1 056.
[84] Gerya T V, Connolly J A D, Yuen D A, et al. Seismic implications of mantle wedge plumes[J].Physics of  the  Earth and Planetary Interiors, 2006, 156: 59-74.[85] Gutscher M A, Kukowski N, Malavieille J, et al. Material transfer in accretionary wedges from analysis of a systematic series of analog experiments[J]. Journal of Structural Geology,1998, 20: 407-416.
[86] Kukowski N, Lallemand S E, Malavieille J, et al. Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Western Mediterranean Ridge accretionary complex[J]. Marine Geology, 2002, 186: 29-42.
[87] Fluck P, Hyndman R D, Lowe C. Effective elastic thickness T-e of the lithosphere in western Canada[J].Journal of Geophysical Research,2003, 108(B9), ETG7-1, doi: 10.1029/2002JB 002201.
[88] Zhao D P. Seismological structure of subduction zones and its implications for arc magmatism and dynamics [J].Physics of the Earth and Planetary Interiors,2001, 127: 197-214.
[89] Arcay D, Trie E, Doin M P. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics[J].Physics of the Earth and Planetary Interiors,2005, 149: 133-153.
[90] Poli S, Schmidt M W. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research,1995, 100: 22 299-22 314.
[91] Ito E, Stern R J. Oxygen-isotopic and strontium-isotopic investigations of subduction zone volcanism-The case of the volcano arc and the Marianas islandarc [J]. Earth and Planetary Science Letters,1986, 76: 312-320.
[92] Schiano P, Clocchiatti R, Bourdon B, et al. The composition of melt inclusions in minerals at the garnet spinel transition zone [J].Earth and Planetary Science Letters,2000, 174: 375-383.
[93] Stern R J. Subduction zones[J]. Reviews of Geophysics,2002, 40(4): 1 012.
[94] van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle [J]. Geochemistry, Geophysics, Geosystems,2002, 3: 1 056.
[95] Gorczyk W, Gerya T V, Connolly J A D, et al. Growth and mixing dynamics of mantle wedge plume[J].Geology,2007, 35(7): 587-590.
[96] Castro A, Gerya T V. Magmatic implication of mantle wedge plumes: Experimental study[J].Lithos,2008, 103(1/2): 138-148.
[97] Takahashi E, Kushiro I. Melting of a dry peridotite at highpressures and basalt magma genesis[J].American Mineralogist,1983, 68: 859-879.
[98] Rose E F, Shimizu N, Layne G D, et al. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions [J]. Science, 2001, 293: 281-283.
[99] Iwamori H, Richardson C, Maruyama S. Numerical modeling of thermal structure, circulation of H2O, and magmatism and metamorphism in subduction zones: Implications for evolution of arcs[J].Gondwana Research,2007, 11: 109-119.
[100] Rupke L H, Morgan J P, Hort M,et al. Serpentine and the subduction zone water cycle[J].Earth and Planetary Science Letters,2004, 223: 17-34.
[101] Chase C G. Extension behind island arcs and motions relative to hot spots[J].Journal of Geophysical Research,1978, 83: 5 385-5 387.
[102] Uyeda S, Kanamori H. Back-arc opening and the mode of subduction[J].Journal of Geophysical Research,1979, 84: 1 049-1 061.
[103] Gerya T V, Yuen D A. Rayleigh Taylor instabilities from hydration and melting propel cold plumes at subduction zones[J].Earth and Planetary Science Letters,2003, 212: 47-62.
[104] Obata M, Takazawa E. Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle[J].Journal of Petrology,2004, 45: 223-234.
[105] Gerya T V, Yuen D A, Sevre E O D. Dynamical causes for incipient magma chambers above slabs[J].Geology,2004, 32: 89-92.
[106] Manea V C, Manea M, Kostoglodov V, et al. Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport[J].Physics of the Earth and Planetary Interiors,2005, 149: 165-186.
[107] Gerya T V,Yuen D A. Characteristics based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties[J].Physics of the Earth and Planetary Interiors,2003b, 140: 293-318.
[108] Niida K. Strucure of Hormoman ultramafic massif of the Hidaka metamorphic belt in Hokkaido, Japan [J].Geological Society of Japan Journal,1974, 80:31-44. [109] Obata M, Nagahara N. Layering of alpine-type peridotite and the segregation of partial melt in the upper mantle[J].Journal of Geophysics Research,1987,92: 3 467-3 474.
[110] Frey F A,Shimizu N,Leinbach A,et al.Compositional variation within the lower layered zone of the Horoman peridotite, Hokkaido,Japan:Constraints on models from melt segregation[J].Journal of Petrology,Special Lherolite Issue,1991,(Special Volume):211-227.
[111] Takazawa E, Frey F A, Shimizu N, et al. Ploybaric petrogenesis of mafic layers in the Horoman peridotite complex, Japan[J].Journal of Petrology,1999, 40:   1 827-1 851.
[112] Takazawa E, Frey F A, Shimizu N, et al. Whole rock composition compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process?[J].Geochimica et Cosmochimica Acta,2000, 64: 695-716.
[113] Toramaru A, Takazawa E, Morishita T, et al. Model of layering formation in a mantle peridotite (Horoman, Hokkaido, Japan)[J].Earth and Planetary Science Letters,2001, 185: 299-313.
[114] Crespo E, Luque F J, Rodas M, et al. Graphite-sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks[J].Gondwana Research,2006, 9: 279-290. 
[115] Faccenda M, Gerya T V, Chakraborty S. Style of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production[J].Lithos, 2008, 103(1/2): 257-287.
[116] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature,2001, 414: 738-742.
[117] Pysklywec R N. Evolution of subduction mantle lithosphere at continental plate boundary[J].Geophysics Research Letters,2001, 23(22): 4 399-4 402.
[118] Pfiffner O A, Ellis S, Beaumont C. Collision tectonics in the Swiss Alps: Insight from geodynamic modeling[J]. Tectonics,2000, 19(6):1 065-1 094.
[119] Burov E, Jolivet L, Le Pourhiet L, et al. A thermo-mechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts[J].Tectonophysics, 2001, 342: 113-136.
[120] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanicalmodels and application to the Lepontine Dome in the Central Alps[J].Journal of Metamorphic Geology,2005, 23: 75-95.
[121] Huerta A D, Royden L H, Hodges K V. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating[J].Journal of Geophysical Research,1998, 103: 15 287-15 302.
[122] Jamieson R A, Beaumont C, Fullsack P, et al. Barrovian regional metamorphism: Where′s the heat? [C]//Treloar P J, O′Brien P J, eds. What Drives Metamorphism and Metamorphic Reactions? London: Geological Society, Special Publications 1442,1998.
[123] Chamberlain C P, Sonder L J. Heat-producing elements and the thermal and baric patterns of metamorphic belts[J].Science,1990,250(4 982): 763-769.
[124] Huerta A D, Royden L H, Hodges K V. The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens[J]. Journal of Metamorphic Geology, 1999, 17: 349-366.
[125] Goff B, Bousquet R, Henry P, et al. Effect of chemical composition of the crust on the metamorphic evolution of orogenic wedges [J].Journal of Metamorphic Geology,2003, 21: 123-141.
[126] Vidal P, Cocherie A, Le Fort P. Geochemical investigations of the origin of the Manaslu leucogranite(Himalaya, Nepal)[J]. Geochimica et Cosmochimica Acta,1982, 46: 2 279-2 292.
[127] Scaillet B C, France-Lanord P, Le Fort P. Batrinath-Gangotri plutons(Garhwal, India): Petrological and geochemical evidence for fractional processes in a high Himalaya leucogranite[J].Journal of Volcanology and Geothermal Research,1990, 44: 163-188.
[128] Macfarlane A M. The Tectonic Evolution of the Core of the Himalaya, Langtang National Park, Central Nepal[D]. Cambridge: Massachusetts Institute of Technology, 1992.
[129] Zhang Guibin, Gao Rui, Xiao Xuchang. Modelling of the Evolution of Collision Mountain Range across the Contact Zone between West Kunlun and Tarim[J].Acta Geoscientia Sinica, 2001, 22(6): 541-546.[张贵宾,高锐,肖序常,横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟[J].地球学报,2001,22(6):541-546.]
[130] Nozkhin A D,Turkina O M. Geochemistry of Granulites [M]. Novosibirsk: Institute of Geology and Geophysics Russian Academy of Sciences Press(in Russian), 1993.
[131] Neumann N, Sandiford M, Foden J. Regional geochemistry and continental heat flow: Implications for the origin of the south Australian heat flow anomaly [J]. Earth and Planetary Science Letters,2000, 183: 107-120.
[132] Rudnick R, Gao S. The composition of the continental crust[C]//Rudnick R,ed.Treatise on Geochemistry: The Crust. Elsevier: Amsterdam, 2004.
[133] Anderson D L.The sublithospheric mantle as the source of continental flood basalts: The case against the continental lithosphere and plume head reservoirs[J].Earth and Planetary Science Letters,1994, 123: 269-280.
[134] Wright T L, Klein F W. Deep magma transport at Kilauea volcano. Hawaii [J]. Lithos,2006, 87: 50-79.
[135] Gerya T V, Burg J-P. Intrusion of ultramafic magmatic bodies into the continental crust: Numercial simulation[J].Physics of the Earth and Planetary Interiors,2007, 160: 124-142.

[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[3] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[6] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[7] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[8] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[9] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[10] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[11] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[12] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[13] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[14] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[15] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
阅读次数
全文


摘要